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Abstract 

In recent years, the replicability of original findings published in psychology journals has 

been questioned.  We show that the replicability of a randomly chosen result cannot 

exceed population mean power, so that estimates of mean power are optimistic estimates 

of replicability. We then present two methods that can be used to estimate mean power 

for a heterogeneous set of studies with significant results: Maximum Likelihood and Z-

curve.  We present the results of two large-scale simulation studies with heterogeneous 

effect sizes and sample sizes. Both methods provide robust estimates of replicability, but 

z-curve has the advantage that it does not require assumptions about the distribution of 

effect sizes. We show that both methods overestimate replicability in the Open Science 

Collaborative reproducibility project and we discuss possible reasons for this.  Based on 

the simulation studies, we recommend z-curve as a valid method to estimate replicability 

based on statistical results of original studies without the need to conduct actual 

replication studies. 

 

Keywords:  Power estimation, Post-hoc power analysis, Publication bias, 

Maximum likelihood, Z-curve, Effect size, Replicability, Simulation. 
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How replicable is psychology?  Estimating Replicability on the Basis of Test 

Statistics in Original Studies 

 

Science is built on a mixture of trust and healthy skepticism.  Scientists who read and cite 

published work trust the authors, reviewers, and editors to ensure that most reported 

results provide sufficient credible support for theoretical conclusions. At the same time, 

scientists also insist that studies be reported in sufficient detail that other researchers can 

repeat them and see whether they can replicate the results. Replication studies help to 

detect false positive results in original studies because a false positive result is unlikely to 

produce a significant result again in future replication studies. Replicability is 

acknowledged to be a requirement of good science (Popper 1934, Bunge 1998).  

According to Fisher, replicability is also a characteristic of a good experiment.  If the null 

hypothesis is false, “a properly designed experiment rarely fails to give ... significance” 

(Fisher, 1926, p. 504).  Therefore, it is not sufficient that a study reports a true positive 

result. It also should produce true positive results in future replication studies.  

Concerns about Replicability 

 In recent years, psychologists and other scientists have started to realize that 

published results are far less replicable than one would expect based on the high rate of 

significant results (Baker 2016; Begley 2013, Begley & Ellis 2012; Chang & Li 2015, 

Francis, 2012; Hirschhorn, Lohmueller, Byrne, & Hirschhorn 2002, Ioannidis 2008, John, 

Lowenstein, & Prelec 2012; Schimmack, 2012). In psychology, the Open Science 

Collaboration (OSC) project estimated the replicability of published results in psychology 

by replicating 100 primary findings of articles from three influential journals that publish 
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results from social and cognitive psychology (OSC, 2015).  The OSC authors used 

several criteria of replicability. The most widely cited criterion was the percentage of 

replication studies that reproduce a statistically significant result with the standard 

criterion of statistical significance (p < .05, two-tailed).  The authors advocated this 

criterion as “a straightforward method for evaluating replication” and suggest that “this 

dichotomous vote-counting method is intuitively appealing and consistent with common 

heuristics used to decide whether original studies “worked.” (OSC, 2015, aac4716-4).  

Whereas 97% of the studies reported a statistically significant result, only 36% of the 

replication studies were significant.  Importantly, it is not clear whether replication 

studies with non-significant results failed to replicate the original result because the 

original result was a false positive result or the replication study produced a false 

negative result.  What is important is that many original studies failed to report results 

that future replication studies can replicate.  Thus, original studies in psychology fail to 

demonstrate a key property of good studies that a good study should have good power to 

produce a significant result, if the null-hypothesis is false. 

 The use of actual replication studies to estimate replicability has some practical 

limitations.  First, it is very difficult to conduct actual replications on a large scale, 

especially for studies that require a long time (longitudinal studies) or are very expensive 

(fMRI studies), or raise ethical concerns (animal research).  Second, replication studies 

require expertise that only a few experts may have. Third, there are many reasons why a 

replication study might fail, and replication failures would require additional studies to 

examine reasons for the failure; that is, was the original result a false positive result or 

was the replication result a false negative?  Thus, it is desirable to have an alternative 
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method of estimating replicability that does not require literal replication studies.  We see 

this method as complementary to actual replication studies.  Neither method can be 

considered a gold standard to assess replicability, but converging evidence from two 

independent methods can be used to answer the main question of our inquiry: How 

replicable are published results in psychology journals?  

 Our approach to the estimation of replicability based on evidence from original 

studies is based on the concept of statistical power. Power analysis was introduced by 

Neyman and Pearson (1933) as a formalization of Fisher’s (1926) characterization of a 

good experiment.  Most psychologists are familiar with Cohen’s (1988) suggestion that 

good experiments should have 80% power. 80% power implies that an original study has 

an 80% chance to produce a significant result, if the null-hypothesis is false. It also 

implies that a replication study has the same 80% chance of obtaining a significant result. 

For a set of studies, the average power of a set of original studies should match the 

success rate of replication studies.  The use of significance testing for original studies 

implies that only significant results are interpreted as evidence for an effect. 

Consequently, non-significant results are either not published or not interpreted as 

evidence for an effect; and occasionally misinterpreted as evidence for the absence of an 

effect. Thus, replicability is limited to the subset of studies that produced a significant 

result in a seminal study.  This selection for significance has important implications for 

the estimation of replicability.  For a full set of studies that includes all non-significant 

and significant results, replicability is simply the percentage of studies that produced a 

significant result. However, for the subset of studies that produced significant results, 

replicability is no longer equivalent to the success rate of this subset of studies because 
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they were selected to be significant.  One solution to this problem could be to compute 

observed power for each study and to average observed power estimates. However, this 

method leads to inflated estimates of replicability because the selection for significance 

inflates observed power (Schimmack, 2012).  Our method corrects for the bias in 

observed power estimates that is introduced by selecting only significant studies.  As the 

average power of a set of studies determines the success rate for a set of exact replication 

studies, our method can estimate replicability for a set of studies that were selected for 

significance; for example, all significant results that were published in a psychology 

journal as evidence for a new discovery.  

Definition of Replicability 

There are several ways to define replicability (OSC, 2015).  We define 

replicability as the probability of obtaining the same result in an exact replication study 

with the same procedure and sample sizes. As most studies focus on rejecting the null 

hypothesis as support for a theoretical prediction, obtaining the same result typically 

means obtaining a significant result again.  It is important to notice one major difference 

between our definition of replicability and the use of statistical significance as a criterion 

for reproducibility in the OSC project.  Our definition specifies that the replication study 

has the same sample size as the original study.  The reason is that power changes if 

sample sizes change.  If an original study produced a significant result with N = 30 and 

50% power, the chance of replicating this result with N = 30 is 50%.  The chance of 

replicating this result with N = 3,000 is virtually 100%.  However, researchers who are 

trying to build on original research findings are trying to replicate the original results with 

similar sample sizes and would not have the resources or motivation to invest 10 times as 
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many resources as researchers who published an original study. Thus, it is crucial for 

future researchers who are planning replication studies to know how likely it is that an 

original result can be replicated with the same amount of resources.  By holding sample 

size constant, replicability is clearly defined. In contrast, by allowing for variable sample 

sizes, replication studies may simply fail to replicate an original finding because they 

used a smaller sample. According to our definition, replication studies with smaller 

samples are not proper tests of replicability (Schimmack, 2012). 

Replicability: Homogeneous versus Heterogenous Sets of Studies 

 The relationship between statistical power and replicability is simple in the 

homogenous case, where the same study is repeated with different independent samples 

from a population.  In the homogenous case, replicability is equivalent to statistical 

power.  For a set of studies, each study has the same probability of producing a 

significant result and the expected value of significant results is power times the number 

of studies.  However, this simple model cannot be used to estimate mean replicability for 

a heterogenous set of studies where power varies across studies as a function of varying 

effect size and sample sizes. For example, the 97 studies with significant results in the 

OSC project varied in their designs (between vs. within-subject designs), sample sizes (N 

= 8 to > 200,000), as well as effect sizes.   

We show (see supplement for proofs) that if a single study is randomly selected 

for exact replication, the probability of a significant result is exactly the mean power in 

the population from which the study was selected. If all the studies were replicated 

exactly (a practical impossibility), the expected proportion of significant results would be 

the population mean power (see Principle 1 below for details). 
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 For a population of studies with 80% mean power, original studies are expected to 

produce 80% significant results.  As we define replicability as reproducing a significant 

result, 20% of the original studies are not eligible for a replication attempt.  Importantly, 

our model assumes that the probability of being included in the set of studies to be 

replicated is also a function of power. To illustrate this, assume that 50 original studies 

had very low power (20%) and 50 original studies had good power (80%). Most of the 

low powered studies would fail to produce a significant result and would not be included 

in the set of studies that are subjected to a replication attempt. Thus, the proportion of 

high powered studies in the set of studies to be replicated is greater than in the original 

set of studies (50 * .80)/(50*.20 + 50*.80) =  40/50 = 80%.  It follows, that selection for 

significance increases mean power.  Whereas mean power for the original studies was 

50% (50*.2 + 50*.8)/100 = .50), mean power after selection for significance is 68% (10 * 

.20 + 40*.8)/50 = (2 + 32)/50 = 34/50 = 68%.  Thus, it is important to distinguish 

between mean power before selection for significance and mean power after selection for 

significance.  In this article, we focus on mean power after selection for significance as 

an estimate of replicability, but we return to the estimation of mean power in the 

Discussion section. 

Introduction of Statistical Models 

 The estimation of power and replicability is a new area of research and we are the 

first to introduce a method for the estimation of replicability.  Most statistical analysis of 

sets of original studies aim to estimate population effect sizes for a set of conceptually 

related studies (e.g., a meta-analysis of clinical intervention studies). A major problem of 

existing meta-analyses methods is that they do not take selection for significance into 
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account and can produce misleading results if non-significant results are not reported. 

Because selection for significance in journals is very common (Francis, 2012), the results 

of meta-analysis are typically biased.  Three methods exist to estimate effect sizes for a 

set of studies after selection for significance (Hedges, 1984; Simonsohn, Nelson & 

Simmons, 2014b; van Assen, van Aert, and Wicherts, 2014).  McShane, Böckenholt, and 

Hansen (2016) evaluated these methods using simulation studies. They found that all 

three methods performed satisfactory with homogenous sets of studies (i.e, a fixed 

population effect size), but produced biased estimates with heterogeneous sets of studies 

in which true effect size varied across studies.  Thus, these methods are not useful for our 

current purpose of estimating replicability for heterogenous sets of studies.  

Hedges (1992) developed the only method for effect size estimation for 

heterogenous sets of studies. Hedges and Vevea (1996) conducted a series of simulation 

studies to evaluate the method under various conditions of heterogeneity and found that 

the method considerably reduced bias due to selection for significance and was relatively 

robust to violation of the model assumptions about the distribution of population effect 

sizes.  This method seems a promising start for our purposes, although Jerry Brunner 

developed our Maximum Likelihood approach before we learned about Hedge’s 

approach. Thus, our first model uses Maximum Likelihood estimation with assumed 

effect size distributions to estimate replicability. 

The second method uses a different approach.  It sidesteps the problem of effect 

size estimation and uses the strength of evidence against the null-hypothesis of individual 

studies to estimate replicability.  All significance tests use p-values as a common metric 

to decide whether the evidence is strong enough to reject the null-hypothesis; typically if 
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p < .05 (two-tailed).  Our method converts exact p-values into z-scores, by finding the z-

score of a standard normal distribution that corresponds to the exact p-value.  The 

distribution of z-scores is then used to estimate replicability.  As the method relies on 

distributions of z-scores, we call it z-curve. 

Notation and statistical background 

 To present our methods formally, it is necessary to introduce some statistical 

notation. Rather than using traditional notation from statistics, we use R-code to formally 

specify our models (R core team, 2012). This approach makes it easier for psychologists 

without formal training in advanced statistics to follow our methods and reproduce our 

results (see, Simonsohn, Nelson, & Simmons, 2014a, for a similar approach). 

 The outcome of an empirical study is partially determined by random sampling 

error, which implies that statistical results will vary across studies. This variation is 

expected to follow a random sampling distribution. Each statistical test has its own 

sampling distribution. We will use the symbol  T  to denote a general test statistic; it 

could be a  t -statistic,  F , chi-squared,  Z , or something more obscure. 

 Assume an upper-tailed test, so that the null hypothesis will be rejected at 

significance level a  (usually  a = 0.05), when the continuous test statistic  T  exceeds a 

critical value  c . Typically there is a sample of test statistic values 
  
T

1
,¼,T

k
, but when 

only one is being considered the subscript will be omitted. The notation    p(t)  refers to the 

probability under the null hypothesis that  T  is less than or equal to the fixed constant  t . 

The symbol p would represent pnorm if the test statistic were standard normal, pf if the 

test statistic had an F -distribution, and so on. While    p(t)  is the area under the curve, 
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   d(t)  is height of the curve above the  x -axis, as in dnorm. Following the conventions of 

the  S  language, the inverse of p is q, so that 
   p(q(t)) =q(p(t)) = t .  

 Sampling distributions when the null hypothesis is true are well known to 

psychologists because they provide the foundation of significance testing.  Most 

psychologists are less familiar with non-central sampling distributions (see Johnson, 

Kotz, & Balakrishnan, 1995).  When the null hypothesis is false, the area under the curve 

of the test statistic's sampling distribution is    p(t,ncp), representing particular cases like 

   pf(t,df1,df2,ncp). The initials ncp stand for non-centrality parameter. This notation 

applies directly when  T  has one of the common non-central distributions like the non-

central  t ,  F  or chi-squared under the alternative hypothesis, but it extends to the 

distribution of any test statistic under any specific alternative, even when the distribution 

in question is technically not a non-central distribution.  The non-centrality parameter is 

positive when the null hypothesis is false, and statistical power is a monotonically 

increasing function of the non-centrality parameter. This function is given explicitly by 

Power =    1-p(c,ncp).  

 The non-centrality parameter can be factored into the product of two terms.  The 

first term is an increasing function of sample size (n), and the second term is a function of 

the unknown parameters that can be considered a standardized effect size (es).  

In symbols,     

 
		 
ncp= f

1
(n)× f

2
(es).  (1) 

While sample size is observable, effect size is a function of unknown parameters and can 

never be known exactly. The quantities that are computed from sample data and 

commonly called effect size are actually estimates of effect sizes.  
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 As we use the term, effect size refers to any function of the model parameters that 

equals zero when the null hypothesis is true, and assumes larger positive values as the 

size of an effect (a mean difference or a covariance) becomes stronger. From this 

perspective, all reasonable definitions of effect size for a particular statistical model are 

deterministic monotone functions of one another and so the choice of which one to use is 

determined by convenience and interpretability. This usage is consistent in spirit with that 

of Cohen (1988), who freely uses the term effect size to describe various functions of the 

model parameters, even for the same statistical test (see also Grissom & Kim, 2012).  

 As an example of Equation (1), consider a standard  F -test for difference between 

the means of two normal populations with a common variance. After some simplification, 

the non-centrality parameter of the non-central  F  may be written 

 
   ncp= nr (1- r)d 2,  

where 
  
n = n

1
+ n

2
 is the total sample size, 

  
r =

n
1

n
 is the proportion of cases allocated to 

the first treatment, and 
  
d =

| m
1
- m

2
|

s
 is Cohen's (1988) effect size for the two-sample 

problem. This expression for the non-centrality parameter can be factored in various 

ways to match Equation (1); for example, 
  
f
1
(n) = nr (1- r) and 

   
f

2
(es) =es2 .  Equation 

(1) applies to the non-centrality parameters of the non-central  Z ,  t , chi-squared and  F  

distributions in general. Thus for a given sample size and a given effect size, the power of 

a statistical test is 

 
		 
Power =1-p(c , f

1
(n)× f

2
(es)).   (2) 
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The function 
   
f

2
(es)  is particularly convenient because it will accommodate any 

reasonable definition of effect size. Details are given in the technical supplement. 

Two Populations of Power 

 Consider a population of independent statistical tests. Each test has its own power 

value, a true probability of rejecting the null hypothesis determined by the sample size, 

procedure, and true parameter values.  Once tests are conducted, there are two sets of 

studies. Some produced significant results and some produced non-significant results. We 

are only considering studies that produced significant results. This selection for 

significance does not change the power values of individual studies. However, the 

population of studies in the set of studies selected for significance differs from the 

original population of studies without selection for significance.  To better understand the 

implications of selection for significance, it is helpful to think about studies as games of 

chance. Designing a study and selecting a hypothesis to test corresponds to 

manufacturing a roulette wheel that may not be perfectly balanced. The numbers on the 

wheel are  p-values, and   p < 0.05 is a win. Running the study and collecting data 

corresponds to spinning the wheel. The unique balance and other physical properties of 

the wheel determine the probability of a win; this corresponds to the power of the test. 

Performing the statistical analysis corresponds to examining the number that comes up on 

the wheel and noting whether   p < 0.05. A large number of wheels are manufactured and 

spun once. This is the population before selection. The wheels that yield wins are put on 

display; this is the population after selection. Naturally, there is a tendency for wheels 

with a higher chance of winning to be put on display. The wheels that yield losing 

numbers are sent to warehouses. 
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 Spinning all the wheels on display a second time would produce winners and 

losers. Replicability is the percentage of wheels that produce wins during this second 

spin.  If the number of wheels on display were large, the percentage of wins would give 

us a close estimate of the true average probability of winning for the set of wheels on 

display. Spinning all the wheels a third time would yield a similar percentage and 

repeating this exercise many times and averaging the proportions would give the true 

probability of a win for the wheels on display. The objective of this paper is to estimate 

this unknown quantity using only the results of the first spin for the wheels that produced 

a winning number on the first spin.  

 We now give a set of fundamental principles connecting the probability 

distribution power before selection for significance to its distribution after selection for 

significance. These principles do not depend on the particular population distribution of 

power, the significance tests involved, or the Type I error probabilities of those tests. 

They do not even depend on the appropriateness of the tests or the assumptions of the 

tests being satisfied. The only requirement is that each power value in the population is 

the probability that the corresponding test will be significant. The supplemental 

materials contain proofs and a numerical example. 

Principle 1 Population mean power equals the overall probability of a significant 

result.  Principle 1 applies equally to the population of studies before and after selection.  

Because it applies after selection, this principle establishes the link between replicability 

and population mean power. If a single published result is randomly selected and the 

study is repeated exactly, the probability of obtaining another significant result equals 

population mean power after selection. In terms of the roulette wheel analogy, this is a 
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two-stage game. The first stage is to select a wheel at random from those on display, and 

the second stage is to spin the wheel. Principle 1 says that the probability of winning the 

game is exactly the mean probability of a win for the wheels on display.  

Principle 2 The effect of selection for significance is to multiply the probability of 

each power value by a quantity equal to the power value itself, divided by population 

mean power before selection. If the distribution of power is continuous, this statement 

applies to the probability density function. 

In the technical supplement, Principle 2 is used to derive Principle 3.  

Principle 3 Population mean power after selection for significance equals the 

population mean of squared power before selection, divided by the population mean of 

power before selection.  

Maximum likelihood replicability estimation 

 The method of maximum likelihood (Fisher, 1922; also see the historical account 

by Aldrich, 1997) is a general method for the estimation of an unknown parameter by 

finding the parameters value that makes the observed data most probable. For any set of 

observed data, the statistical assumptions allow calculation of the probability of obtaining 

the observed the data (or for continuous distributions, the probability of obtaining data in 

a tiny region surrounding the observed data). The likelihood function expresses this 

probability as a function of the unknown parameter. Geometrically, the likelihood 

function is a curve, and estimation proceeds by finding the highest point on the curve. 

The maximum likelihood estimate is the parameter value yielding that maximum. The 

case of multi-parameter estimation is analogous, with the curve being replaced by a 

convoluted surface in higher dimension. When data are consistent with the model 
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assumptions, maximum likelihood generally yields more precise parameter estimates than 

other methods, especially for large samples (Lehmann & Casella, 1998).  

 For simplicity, first consider the case of heterogeneity in sample size but not 

effect size. In this case the single unknown parameter is the effect size es, and the 

likelihood function is based on the conditional probability of observing the data given 

selection for significance. Denoting the observed test statistic values by 
  
t
1
,¼,t

k
, the 

likelihood function is a product of  k  terms of the form  

 

		 

d(t
j
, f

1
(n

j
)× f

2
(es))

1-p(c
j
, f

1
(n

j
)× f

2
(es))

,   (1) 

where because of selection for significance, all the 
 
t

j
 values are greater than their 

respective critical values 
 
c

j
. Expression (1) becomes the likelihood of Hedges (1984) for 

the case of a two-sample  t -test; see the  technical supplement for an example.  In general, 

the maximum likelihood estimate of  es is the effect size value that makes the likelihood 

function greatest. Denote it by . The estimated probability of significance for each 

study is obtained by 

  

and then the estimated power values are averaged to produce a single estimate of mean 

power. 

 Now include heterogeneity in effect size as well as sample size. If sample size and 

effect size before selection are independent, selection for significance induces a mild 

relationship between sample size and effect size, since tests that are low in both sample 

size and effect size are under-selected, while tests high in both are over-selected. Suppose 
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that the distribution of effect size before selection is continuous with probability density 

   
g

q
(es). This notation indicates that the distribution of effect size depends on an 

unknown parameter or parameter vector q . In the technical supplement, it is shown that 

the likelihood function (a function of q ) is a product of  k  terms of the form 

 

		 

d(
0

¥

ò t
j
, f

1
(n

j
)× f

2
(es))g

q
(es)des

1-p(c
j
, f

1
(n

j
)× f

2
(es))é

ë
ù
û0

¥

ò g
q
(es)des

,  (2) 

where the integrals denote areas under curves that can be computed with R's integrate 

function. Again, the maximum likelihood estimate is the value of q  for which the value 

of the product is highest. Denote the maximum likelihood estimate by  q̂ . Typically  q̂  is a 

single number or a pair of numbers. 

 As before, an estimate of population mean power is produced by averaging 

estimated power for the  k  significance tests. It is shown in the technical supplement 

that the terms to be averaged are 

 

		 

1-p(c
j
, f

1
(n

j
)× f

2
(es))é

ë
ù
û

2

0

¥

ò g
q̂
(es)des

1-p(c
j
, f

1
(n

j
)× f

2
(es))é

ë
ù
û0

¥

ò g
q̂
(es)des

,   

an expression that also follows from an informed application of Principle 3. 

Z-curve  

 Z-curve follows a traditional meta-analysis that converts  p-values into  Z -scores 

as a common metric to integrate results from different original studies (Stouffer, 

Suchman, DeVinney, Star and Williams, 1949; Rosenthal, 1979). The use of  Z -scores as 

a common metric makes it possible to combine results from widely different statistical 

methods and tests. The method is based on the simplicity and tractability of power 
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analysis for the one-tailed  Z -test, in which the distribution of the test statistic under the 

alternative hypothesis is just a standard normal shifted by a fixed quantity that we will 

denote by  m (Heisey & Hoenig, 2001). As described in the technical supplement,  m is 

the non-centrality parameter for the one-tailed  Z -test. Input to the  Z -curve is a sample 

of  p-values from two-sided or other non-directional tests, all less than  a = 0.05. These 

 p-values are processed in several steps to produce an estimate. 

1.  Convert  p-values to  Z -scores. The first step is to imagine, for simplicity, that 

all the  p-values arose from two-tailed  Z -tests in which results were in the predicted 

direction. This is equivalent to an upper-tailed  Z -test with significance level 

 a / 2 = 0.025. The conversion to  Z -scores (Stouffer et al., 1949) consists of finding 

the test statistic  Z  that would have produced that  p-value. The formula is 

   Z =qnorm(1- p / 2). 

 

2. Set aside   Z > 6. We assume that  p-values in this range come from tests with 

power essentially equal to one. To avoid numerical problems arising from  p-values 

that are approximately zero, we set them aside for now and bring them back in the 

final step. 

 

3.  Fit a finite mixture model. Before selecting for significance and setting aside 

values above six, the distribution of the test statistic  Z  given a particular non-

centrality parameter value  m is normal1 with mean  m. Afterwards, it is a normal 

                                                        
1 This statement would be exactly true if the  p-values really came from one-sided  Z -

tests as suggested in Step 1. In practice it is an approximation. 
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distribution truncated on the left at the critical value  c  (usually 1.96) truncated on 

the right at 6, and re-scaled to have area one under the curve.  Because of 

heterogeneity in sample size and effect size, the full distribution of  Z  is an average 

of truncated normals, with potentially a different value of  m for each member of the 

population. As a simplification, heterogeneity in the distribution of  Z  is represented 

as a finite mixture with  r  components. The model is equivalent to the following two-

stage sampling plan. First, select a non-centrality parameter  m from 
  
m

1
,¼,m

r
 

according to the respective probabilities 
  
w

1
,¼,w

r
. Then generate  Z  from a normal 

distribution with mean  m and standard deviation one. Finally, re-scale so that the 

area under the curve equals one.  Under this approximate model, the probability 

density function of the test statistic after selection for significance is  

 

		 

f (z)= w
j

j=1

r

å
dnorm(z -m

j
)

pnorm(6-m
j
)-pnorm(c - m

j
)

,  (3) 

for c < z < 6.  

For the sake of comparing predicted and observed distributions of z-scores, 

distributions are fitted using a kernel density estimate (Silverman, 1986) as 

implemented in R's density function, with the default settings.    

 Specifically, the fitting step proceeds as follows. First, obtain the kernel density 

estimate based on the sample of  Z  values between z = 2 and z = 6 and re-scale it so 

that the area under the curve between z = 2 and z = 6 equals one. Call this the 

conditional density estimate. Next, calculate the conditional density estimate at a set 

of equally spaced points ranging from 2 to 6. Then, numerically choose 
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values so as to minimize the sum of absolute differences between the conditional 

density estimate and Expression (3). 

 

4.  Estimate mean power for   Z < 6. The estimate of rejection probability upon 

replication for   Z < 6 is the area under the curve above the critical value, with 

weights and non-centrality values from the curve-fitting step. The estimate is 
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r
 are the values located in Step 3. Note that while the 

input data are censored both on the left and right as represented in Formula (3), there 

is no truncation in Formula (4) because it represents the distribution of  Z  upon 

replication. 

 

5.  Re-weight using   Z > 6. Let  q  denote the proportion of the original set of  Z  

statistics with   Z > 6. Again, we assume that the probability of significance for those 

tests is essentially one. Bringing this in as one more component of the mixture 

estimate, the final estimate of the probability of rejecting the null hypothesis for 

exact replication of a randomly selected test is   
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By Principle 3, this is the estimate of population mean power after selection for 

significance. 
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Simulations 

The simulations reported here were carried out using the R programming environment (R 

Core Team, 2012) distributing the computation among 70 quad core Apple iMac 

computers.  The R code is available in the supplemental materials. In the simulations, 

the estimation methods were applied to samples of significant chi-squared or  F  

statistics, all with   p < 0.05. This covers most cases of interest, since  t  statistics may be 

squared to yield  F  statistics, while  Z  may be squared to yield chi-squared with one 

degree of freedom.  

S1:  Heterogeneity in Both Sample Size and Effect Size 

 To model heterogeneity in effect size, we sampled effect sizes before selection 

from a gamma distribution (Johnson, Kotz, & Balakrishnan, 1995). Sample sizes before 

selection were sampled from a Poisson distributed with a population mean of 86. For 

convenience, sample size and effect size were independent before selection.  

 The simulation study varied the amount of heterogeneity in effect sizes (standard 

deviation of effect size after selection 0.10, 0.20 or 0.30), true population mean power 

(0.25, 0.50 or 0.75), number of test statistics upon which estimates of mean power are 

based (k = 100, 250, 500, 1,000 or 2,000), type of test ( F  or chi-squared), and 

experimental degrees of freedom (1, 3 or 5). Within each cell of the design, ten thousand 

significant test statistics were randomly generated, and population mean power was 

estimated using all four methods. Results for the manipulation of test statistic and 

experimental degrees of freedom were very similar (see supplemental material). Thus, 

we present results for  F -tests with numerator   df = 1, which is the most commonly 

used test in psychological research.   Table 1 shows that both methods produce good 
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estimates of the true parameter used for the simulation and similar variation in 

these estimates across simulation studies.   Table 2 shows the mean absolute error of 

estimation for a single simulation study.  With 1,000 test statistics both methods have a 

practically negligible absolute error.  The results of the first simulation study show that 

both methods can estimate replicability for heterogeneous sets of studies.  

S2: Simulation of Complex Heterogeneity  

 In the preceding simulation, heterogeneity in effect size before selection was 

modeled as a gamma distribution, with effect size independent of sample size before 

selection. The use of a gamma distribution gave Maximum Likelihood (ML) an unfair 

advantage because the simulated distribution matches the assumed distribution.  To 

examine the robustness of ML, we conducted a second simulation study in which the 

simulated distribution of effect sizes differed from the gamma distribution that ML uses 

to estimate replicability. A second goal of Study 2 was to examine how correlation 

between effect size and sample size might influence replicability estimates.  ML assumes 

that effect sizes and sample sizes are independent.  In contrast, z-curve does not make 

any assumptions about the correlation between effect sizes and sample sizes.  We limited 

this simulation to  F -tests with one numerator degree of freedom because the previous 

simulations showed that that the test-statistic and degrees of freedom had practically no 

effect on the results.  

In this simulation, effect size after selection had a beta distribution rather than a 

gamma distribution. A beta distribution is limited to values between zero and one and 

thus lacks the long right tail of a gamma distribution, but a value of one is considerably 

above Cohen's (1988, p. 287) large effect size of   f = 0.4 . We made sample size and 
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effect size non-independent by connecting them by a Poisson regression. This created 

varying population correlations between sample sizes and effect sizes across sets of 

simulated studies. We believe that a negative correlation between sample size is expected 

because researchers would naturally tend to use larger samples when they expect smaller 

effects.  This is evident in the OSC (2015) studies, where studies from cognitive 

psychology had larger effects and smaller samples than studies from social psychology. 

 In the simulations, the variance of effect size after selection was fixed at 0.30, the 

high heterogeneity value in the preceding simulation study. Sample size after selection 

was Poisson distributed with expected value 
  
exp(b

0
+ b

1
es). Mean effect size after 

selection and the parameters 
 
b

0
 and 

 
b

1
 were selected to achieve (a) desired population 

mean power after selection, (b) desired population correlation between effect size and 

sample size after selection, and (c) population mean sample size of 86 after selection at 

the mean effect size. Details are given in the technical supplement. 

 Three values of population mean power (0.25, 0.50 and 0.75), five values of the 

number of test statistics k (100, 250, 500, 1000 and 2000) and five values of the 

correlation between sample size and effect size (0.0, -0.2, -0.4, -0., -0.8) were varied in a 

factorial design, with ten thousand simulated data sets in each combination of values. All 

four estimation methods were applied to each simulated data set, with three random 

starting values for maximum likelihood.  

 Table 3 shows means and standard deviations of estimated population mean 

power as a function of true population mean power and the standard deviation of effect 

size.  We were surprised to see that a correlation between sample sizes and effect sizes 

had little effect on the ML results.  Although unexpected, this result suggests that it is 
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permissible to assume independence between effect sizes and sample sizes and to apply 

ML to datasets, in which sample sizes and population effect sizes may be correlated. 

However, changing the simulation of the distribution of effect sizes lead to less accurate 

estimates for ML, whereas this change did not affect z-curve because it does not make 

any assumptions about the distribution of effect sizes. Table 4 confirms the differences 

between the two methods with mean absolute error of estimation. Z-curve produced more 

accurate estimates than MLRE.  In conclusion, our results confirm Hedges and Vevea’s 

(1996) findings for effect size estimation, that ML estimates are relatively robust against 

violations of distribution assumptions. However, we also show that a new method that 

does not require this assumption produced more accurate results. Based on these results, 

we recommend z-curve as a viable method to estimate the average replicability of sets of 

studies.  

A conservative bootstrap confidence interval for z-curve 

 Point estimates should always be accompanied by information about the precision 

of the estimate.  In order to provide this information, we developed a bootstrap 

confidence interval (Efron 1981, Efron & Tibshirani, 1993). To create a confidence 

interval for z-curve estimates, we resampled z-scores 500 times with replacement and 

computed replicability estimates for each sample. We used the histogram of the resulting 

values as an approximation to the sampling distribution of the statistic. The 95 percent 

bootstrap confidence interval ranges from the 2.5 percentile to the 97.5 percentile of the 

500 estimates.   

 Especially when samples are small, it is important to verify that a 95% confidence 

interval contains the true value 95% of the time. This is called the coverage of the 
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confidence interval. A first set of simulation studies showed that the coverage of the 95% 

bootstrap confidence interval was sometimes less than 95%. To avoid this problem, we 

created a conservative bootstrap interval by decreasing the lower limit by 0.02 and 

increasing the upper limit by 0.02. This yields our conservative bootstrap confidence 

interval.  We tested the conservative bootstrap confidence interval in the setting of full 

heterogeneity, with 10,000 simulated datasets in each combination of three values of true 

population mean power, and seven values of the number of test statistics, ranging from k 

= 25 to k =2,000.  Table 5 shows the coverage values. Except for very small sets of 

studies (k = 25), coverage exceeds the nominal value of 95%. Coverage is typically much 

higher than this value, which confirms its conservative nature.  

 Table 15 shows mean upper and lower confidence limits. The upper limit is the 

top number in each cell, and the lower limit is the bottom number. For example, when the 

true population mean power is 0.50 and the z-curve estimate is based on k =100 test 

statistics, the average confidence interval will range from 0.36 to 0.67.  In contrast, a set 

of 1,000 studies produces a 95% confidence interval that ranges from .42 to .56.  For 

small sets of studies, actual replication studies would produce a narrower confidence 

interval than our statistical estimation method. However, the advantage of our statistical 

method is that it is much easier to get a large sample of original test statistics.   

Application to the Replication Project 

Of the 100 original studies in the OSC (2015) Replication Project, three were null results 

(failures to reject the null hypothesis), and in an additional four studies the original result 

was only ``marginally" significant, with  p-values ranging from 0.051 to 0.073. These 

were set aside, because technically these studies did not reject the null hypothesis. Of the 
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remaining 93 studies, five were eliminated because the replication studies were not based 

on an independent sample or had other unusual characteristics. This left a sample size of 

k = 88 studies.  The success rate of replication studies for our set of 88 studies was 39%, 

which is close to the 36% success rate for the full set of 97 studies.  

 Most of the test statistics for the originally reported tests were  F  or chi-squared. 

The rest were converted by squaring  t  statistics to obtain  F s, and squaring  Z  statistics 

to obtain chi-squared with one degree of freedom. Input to z-curve was simply the set of 

 p-values. For ML, test statistics were divided into subsets according to the type of test 

(F or chi-squared) and the (numerator) degrees of freedom. Estimates were calculated for 

each subset, and then combined as a weighted sum, using the observed proportions of the 

subsets as weights. 

 The ML estimate of replicability was 59%.  The estimate for z-curve was 66%. 

However, these point estimates have to be interpreted with caution given the small 

number of studies. The 95% confidence interval for z-curve ranged from 49% to 79%.  

Moreover, the 39% of actual successful replications is also influenced by sampling error 

and the 95% interval around this estimate of replicability ranges from 29% to 49%.  

Although it is not possible to know replicability precisely based and difficult to quantify 

the difference between the two estimation methods (actual studies vs. statistical 

estimation), the results suggest that our statistical approach provides optimistic estimates 

of replicability. We discuss the reasons for this optimistic bias in the Discussion section.  

Discussion 

The replicability of psychological research has been questioned.  In this article, we 

introduced two methods that can be used to estimate replicability for a heterogeneous set 
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of studies that reported a significant result. One method relies on Maximum Likelihood 

estimation. The other method relies on the distribution of z-scores. Although both 

methods produced reasonable estimates, z-curve performed slightly better because it 

makes no assumption about the distribution of effect sizes.  Based on simulation studies, 

we showed that z-curve provides accurate estimates of replicability for heterogeneous 

sets of studies with significant results. It is also the most convenient method because it 

requires only p-values as input, and p-values are easy to obtain from reported test 

statistics in published articles. P-values are even available for methods without explicit 

sampling distributions.  We also developed a conservative bootstrap confidence interval 

that makes it possible to demonstrate reliable differences in replicability across different 

sets of studies or to test whether a set of studies is consistent with Cohen’s recommended 

power of 80% (Cohen, 1988). We applied these methods to test statistics from original 

studies that were replicated in the OSC reproducibility project. As replicability predicts 

the success rate of exact replication studies, we used the success rate in the replication 

studies to compare our results to the replicability estimate based on actual replication 

studies. Whereas 39% of 88 original studies were replicated, our statistical methods 

predicted success rates of 59% for MLRE and 66% with z-curve.  

Problem of Conducting Exact Replication Studies 

 The most obvious explanation for the lower success rate in the OSC replication 

studies is that it is virtually impossible to exactly replicate original studies in psychology. 

Not surprisingly, several articles have pointed out that the 36% success rate may severely 

underestimate replicability of original studies.  Gilbert, King, Pettigrew, and Wilson 

(2016) distinguished studies that were exact replications and studies that differed 
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substantially from the original studies (e.g., a study conducted in the United States was 

replicated in another country).  They found that close replications were four times more 

likely to replicate than studies with some notable differences.  Daniel Gilbert even 

questioned whether the OSC studies can be considered replication studies. “If you read 

the reports carefully, as we did, you discover that many of the replication studies differed 

in truly astounding ways — ways that make it hard to understand how they could even be 

called replications” (Reull, 2016).  Given this serious criticism of the reported 36% 

success rate, it is extremely valuable to have an alternative estimate of replicability that 

avoids the problems of conducting actual replication studies by using the reported results 

of original studies. This method is immune to criticisms about experimental procedures 

of actual replication studies because the estimate relies on the original studies. Our 

simulation studies show that our method produces accurate estimates of replicability, and 

our results suggest that nearly a third of the failed replication studies might be due to 

problems with conducting exact replication studies (66% - 39% = 27%).  Moreover, the 

upper limit of the 95% confidence interval for this small set of studies is 79%, which is 

just shy of Cohen’s recommended level of 80%.  At the same time, the lower limit of the 

95% confidence interval is 49%.  This is slightly better than the 36% estimate reported in 

the OSC article, but it would suggest that psychologists need to increase power to ensure 

that actual replication studies can successfully reproduce a significant result.  In the 

absence of more precise estimates, it is important to realize that the OSC results and our 

results are both consistent with Cohen’s seminal work on power, which suggested that the 

typical published study in psychology has 50% power to discover an average effect size 

(Cohen, 1962; Sedlmeier & Gigerenzer, 1989).  Thus, we think the existing evidence 
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suggests that replicability in psychology is about 50%, but this estimate comes with a 

wide margin of error. Future research with larger and more representative samples of 

studies are needed to obtain more precise estimates of replicability.  More important, all 

results confirm that psychological studies often have insufficient power, especially when 

the population effect size is small. Although the past five years have seen a searching 

concern about false positive results, we would like to remind readers that low power can 

also produce false negatives in original studies and in replication studies. Thus, 

increasing statistical power in original studies remains a priority for psychologists for two 

reasons. First, high statistical power is needed to avoid false negatives in original studies. 

Second, high statistical power is needed to avoid false negatives in replication studies.   

The File Drawer Problem 

 The file drawer problem (Rosenthal, 1979) provides an alternative explanation for 

the discrepancy between our statistical predictions of replicability and the actual success 

rate in the OSC project. To appreciate this fact, it is important to recognize the distinction 

between selection for significance in original studies and file drawers. Our model 

assumes that selection for significance occurs only once when researchers conduct a 

seminal study of a new prediction (e.g., the first study on the effect of Mozart music on 

performance on an IQ test). If this study fails, the research question is abandoned and 

nobody else does a second attempt to test it.  This selection model ensures that high 

powered studies are much more likely to end up in the published literature and are 

subjected to a replication attempt than low powered studies.  The model would also 

assume that subsequent (conceptual or exact) replication studies report all results whether 

they are significant or not.  However, this assumption is inconsistent with a 95% success 
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rate in published journals that report not only original, new studies, but also conceptual 

replication studies. Ample evidence indicates that the high success rate of conceptual 

replication studies in published articles is due to missing studies with non-significant 

results (Francis, 2012; Schimmack, 2012; Sterling et al., 1995).  This has consequences 

for the replicability of published studies because repeated tests of the same hypothesis 

increase the probability that low powered studies are published.  This can be seen by 

imagining that researchers continue to repeat the same study until it is significant and 

then only the significant result is published. In this scenario, high powered studies no 

longer have an advantage to be selected into the set of published studies with significant 

results.  Moreover, as studies with high power require more resources, low powered 

studies might even be overrepresented in the set of published studies relative to high 

powered studies.  McShane et al. (2016) point out that the selection model has a strong 

influence on estimates.  It is therefore important to recognize that our model assumes that 

there is no file-drawer of already conducted replication studies. If such a file drawer 

exists, our method overestimates replicability.   

Some researchers may not be aware that even conceptual replications contribute 

to the file drawer problem. For example, Gilbert and Wilson (2015) describe their work 

that led to a published article that reported only significant results. “We did some 

preliminary studies that used different stimuli and different procedures and that showed 

no interesting effects. Why didn’t these studies show interesting effects? We’ll never 

know. Failed studies are often (though not always) inconclusive, which is why they are 

often (but not always) unpublishable. So yes, we had to mess around for a while to 

establish a paradigm that was sensitive and powerful enough to observe the effects that 
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we had hypothesized.” Gilbert and Wilson recognize that it would be unethical to run 

exact replication studies until one of them produced a significant result. However, they 

do not recognize that running conceptual replication studies until one of them works also 

increases the chances that a low powered study produces a significant result that will be 

difficult to replicate in future studies. Thus, research practices like the one described by 

Gilbert and Wilson can also account for the discrepancy between the success rate of OSC 

replication studies and our statistical estimate of replicability. Our estimates are best 

considered the best-case scenario, assuming exact replications and no file drawer. Given 

these idealistic assumptions, it is probably not surprising that the actual success rate was 

considerably lower. 

Replicability and False-Positives  

 A common mistake is to interpret non-significant results as evidence for the 

absence of an effect (i.e., the null-hypothesis is true).  This mistake is often made in 

original articles, but it has also occurred in the interpretation of the OSC results.  Sixty-

four percent of the OSC replication studies produced a non-significant result.  It is 

difficult to interpret these non-significant results because there are two alternative 

explanations for a non-significant result in a replication study. Either the replication study 

produced a true-negative result and the original study reported a false positive result, or 

the replication study produced a false negative result and the original study produced a 

true positive result.  The 64% failure rate in the OSC project might be misinterpreted as 

evidence that 64% of original significant results were false positive results.  This 

interpretation would be a mistake because it ignores the possibility that original studies 

correctly rejected the null hypothesis and replication studies produced false negative 
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results.  One reason for the misinterpretation of the OSC results could be that the article 

claims that the replication studies used “high-powered designs” (aac4716-1) and that 

Table 1 suggests that replication studies had over 90% power.  It is tempting to infer from 

a non-significant result in a study with 90% power that a non-significant result can be 

interpreted as evidence for H0. However, this is not a valid inference because statistical 

power depends on the specification of the alternative hypothesis.  The OSC replication 

studies had over 90% power to produce a significant result if the effect size estimate of 

the original study matched the population effect size. Many of the effect sizes in the 

original studies were moderate or large (see Cohen, 1988). A non-significant result in 

replication studies can be used as evidence that the population effect size is likely to be 

smaller than these effect sizes, but it cannot be used to infer that the effect size is zero.   

 Further confusion is created by a statistical test of the distribution of non-

significant p-values in the OSC project.  If all of these original significant results had 

been type-I errors, the distribution of p-values would be uniform.  The authors tested the 

distribution of p-values and found that “it deviated slightly from uniform with positive 

skew” and that this deviation was statistically significant with p = .048.  This finding can 

be used to reject the hypothesis that all non-significant results were false positives.  

However, the OSC article makes the misleading statement that “nonetheless, the wide 

distribution of P values suggests against insufficient power as the only explanation for 

failures to replicate” (p. aac4716-3).  This statement implies that at least some of the 

failed replication studies revealed false positive results in the original studies. However, a 

non-significant deviation from a uniform distribution cannot be used to infer that all or 

most of the non-significant results are false positive results.  Once more, this 
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interpretation would make the mistake of interpreting a non-significant result as evidence 

for the absence of an effect.   

We recommend distinguishing between replicability and detection of false 

positives.  First, exact replication studies with the same sample size as original studies 

can be used to examine the replicability of published studies.  Significant results 

strengthen the credibility of a published result and a series of independent, mostly 

successful replication studies can be used to establish an original finding as a true 

discovery.  If replication studies fail most of the time, the probability that an original 

result was a false positive result increases. In this case, it may be necessary to conduct 

studies with high precision to examine whether an estimate of the population effect size is 

sufficiently close to zero to affirm the null-hypothesis. For example, registered 

replication reports have sample sizes that are large enough to provide positive evidence 

for null-effects (Simons, Holcombe, Spellman, 2014).  

Other Measures of Replicability  

Our method focuses on statistical significance as the criterion concluding that a 

result has been replicated.  Z-curve estimates the probability of replicating a randomly 

chosen significant result in an exact replication study.  The OSC (2015) proposed several 

additional ways to compare the results of original and replication studies.  One method 

compares replication estimated effect sizes to original estimated effect sizes. The authors 

propose to examine whether the estimated effect size of an original study is within the 

95% confidence interval of a replication study.  We think that this definition of 

replicability has numerous limitations. First, a 95% confidence interval depends on 

sample size. As the sample size of the replication study increases (while of course the 
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sample size of the original study remains constant), sampling error decreases. The 

method will eventually show that none of the original results could be replicated because 

the original effect size is contaminated with sampling error and will never match the 

population effect size exactly. Conversely, a replication study with a very small sample 

size will have a very wide confidence interval, one that is likely to include the estimated 

effect size. Thus, the success rate of replication studies depends on sample size, while 

perversely encouraging under-powered replication studies to demonstrate high 

replicability.  More important, the comparison of effect sizes has no direct relationship to 

hypotheses.  Two effect sizes can differ significantly from each other without leading to a 

theoretical contradiction, if both effect sizes are in the same direction and both effect 

sizes are within a range that is predicted by a theory.  In our opinion, a definition of 

replicability that is not tied to a theoretically meaningful outcome of the original study is 

not particularly informative.   

The second approach compares mean estimated effect sizes of original and 

replication studies.  This criterion has similar problems as the previous criterion.  Most 

important, a significant difference in mean effect sizes may have no theoretical 

implications. For example, the hypothesis “money buys happiness” is supported by a 

correlation of r = .1 or r = .2.  At best, the comparison of mean effect sizes may be used 

to detect publication bias.  However, even for this purpose the comparison of observed 

means is problematic. The reason is that it is important to distinguish between two 

selection mechanisms that have the same effect on the average effect size in a set of 

replication studies.  The mere selection of significant studies to examine replicability will 

lead to inflated observed effect sizes in the set of studies with significant results that are 
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replicated.  Thus, it is practically guaranteed that the average observed effect size of the 

replication studies will be lower than the observed mean of the original studies.  Another 

reason for lower means in replication studies is the file drawer problem. However, there 

exist better methods to test whether publication bias is present that do not confound 

selection for significance with the file drawer problem (Francis, 2012; Schimmack, 

2012).  

The third statistical criterion is based on a meta-analysis of the original and 

replication studies.  The main problem with this approach is the file drawer problem. Just 

like large meta-analysis, even a meta-analysis of two studies is biased if additional tests 

with non-significant results are missing. So, unless the original study is the only study 

that has been conducted, a meta-analysis needs to take publication bias into account. 

However, more than two studies are needed to test for bias in meta-analyses and a failed 

replication study indicates that more research is needed even if the combined results 

produce a non-significant result.   

In conclusion, the main goal of original research articles is to test theoretical 

predictions about cause-effect relationships.  The most common approach to drawing 

conclusions from an empirical study is to conduct a hypothesis test and to reject the null-

hypothesis.  Psychological journals report thousands of these tests each year.  Given the 

importance of statistical inference for theory development, we believe that it is important 

to examine how replicable a statistically significant result in a published article is. Cohen 

recommended that researchers should plan studies to have 80% power.  We believe that 

80% is also a reasonable goal for the success rate of replication studies if original studies 

were carefully planned studies that tested a theoretically important prediction.  
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Future Directions 

In future research, it will be interesting to develop different methods for the 

estimation of replicability assuming the presence of file-drawers with failed conceptual 

replication studies.  It will also be interesting to examine how robust our methods are 

when researchers use a variety of questionable research practices to produce significant 

results (John et al., 2012).  One advantage of our method is that it can be used for large 

sets of studies from diverse areas of psychology. Thus, it can be used to examine 

differences in replicability across disciplines. For example, the OSC project provided 

preliminary evidence that cognitive psychology is more replicable than social 

psychology. Our method can be used to test this hypothesis with much larger sets of 

studies.  Our method can also be used to examine whether recent efforts to improve 

replicability of psychology have produced positive results. For example, we can compare 

a representative sample of studies in 2008 to a representative sample of studies in 2016.  

Finally, our method can be used to plan sample sizes of replication studies. One main 

problem of the OSC project was the use of observed power to plan sample sizes of 

replication studies. Our method can correct for the inflation in effect sizes that is 

introduced by selection for significance to ensure that replication studies have adequate 

power to avoid false negative results in replication studies.   
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Table 1: Means and standard deviations of estimated power for heterogeneity in 

sample size and effect size based on 1,000 F-tests with numerator df = 1 

 
 Mean  Standard Deviation 

 
Population Mean Power = 0.25 

 
 SD of Effect Size  SD of Effect Size 

 0.1  0.2  0.3   0.1  0.2  0.3  

 
MLRE 0.230 0.269 0.283  0.069 0.016 0.015 

Z-curve 0.233 0.225 0.226  0.027 0.026 0.024 

 
Population Mean Power = 0.50 

 
 SD of Effect Size  SD of Effect Size 

 0.1  0.2  0.3   0.1  0.2  0.3  

 
MLRE 0.501 0.502 0.506  0.025 0.019 0.019 

Z-curve 0.504 0.492 0.487  0.026 0.026 0.025 

 
Population Mean Power = 0.75  

 
 SD of Effect Size  SD of Effect Size 

 0.1  0.2  0.3   0.1  0.2  0.3  

 
MLRE 0.752 0.750 0.750  0.022 0.017 0.014 

Z-curve 0.746 0.755 0.760  0.021 0.017 0.016 
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Table 2: Mean Absolute Error of estimation for heterogeneity in sample size 

and effect size based on 1, 000 F-tests with numerator df = 1 

 
    

 

SD of Effect size 

 

0.1  0.2  0.3  
    

Population Mean Power = 0.25 
    

MaxLike  3.55 2.06 3.34  

Z-curve  2.59 3.08 2.90 
    

Population Mean Power = 0.50 
    

MaxLike  1.80 1.49 1.50  

Z-curve  2.12 2.19 2.23  
    

Population Mean Power = 0.75 
    

MaxLike  1.42 1.18 1.16  

Z-curve  1.69 1.42 1.55  
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Table 3: Means and standard deviations of estimated power with beta effect size and 

correlated sample size and effect size: k = 1, 000 F-tests with numerator df = 1 

 

 
 Mean  Standard Deviation 

 
 Population Mean Power = 0.25 

 
 Correlation  Correlation 

 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
MaxLike 0.302 0.301 0.300 0.300 0.300  0.015 0.015 0.015 0.015 0.015 

Z-curve 0.232 0.231 0.230 0.231 0.230  0.015 0.015 0.015 0.015 0.015 

 
 Population Mean Power = 0.50 

 
 Correlation  Correlation 

 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
MaxLike 0.532 0.533 0.533 0.534 0.534  0.018 0.018 0.019 0.019 0.019 

Z-curve 0.493 0.494 0.495 0.495 0.495  0.023 0.023 0.023 0.023 0.023 

 
 Population Mean Power = 0.75 

 
 Correlation  Correlation 

 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
MaxLike 0.826 0.832 0.836 0.838 0.840  0.016 0.016 0.015 0.015 0.015 

Z-curve 0.785 0.790 0.793 0.794 0.796  0.013 0.013 0.013 0.012 0.012 
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Table 4: Mean Absolute Error of estimation with beta effect size and correlated sample 

size and effect size: k = 1, 000 F-tests with numerator df = 1 

 
 Correlation 

 -0.8 -0.6 -0.4 -0.2 0.0 

 
Population Mean Power = 0.05 

 
MaxLike  5.17 5.11 5.05 5.05 5.01 

Z-curve  2.37 2.41 2.47 2.48 2.50 

 
Population Mean Power = 0.05 

 
MaxLike  3.25 3.34 3.42 3.43 3.46 

Z-curve  1.92 1.91 1.89 1.90 1.89 

 
Population Mean Power = 0.05 

 
MaxLike  7.62 8.23 8.56 8.76 8.97 

Z-curve  3.51 4.01 4.27 4.43 4.59 
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Table 5: Coverage of the 95% conservative bootstrap confidence interval 

 
        

Population Number of Tests 

Mean Power 25  50  100  250  500  1000 2000 
        

0.25  95.78 97.13 98.02 98.69 98.76 98.35 97.95 
0.50  94.58 95.51 96.79 98.27 99.11 99.28 99.15 
0.75  93.21 94.81 96.83 98.85 99.37 99.73 99.58 
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Table 6: Average Upper and Lower Confidence limits 

 
        

Population Number of Tests 

Mean Power 25  50  100 250 500 1000 2000 
        

0.25  0.54 0.46 0.40 0.35 0.32 0.30 0.29 

 
0.06 0.09 0.11 0.14 0.16 0.17 0.17 

0.50  0.76 0.71 0.67 0.62 0.58 0.56 0.55 

 
0.26 0.32 0.36 0.39 0.41 0.42 0.43 

0.75  0.89 0.87 0.85 0.83 0.81 0.80 0.79 

 
0.55 0.61 0.65 0.67 0.68 0.69 0.69 

        

 

 

 


