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In scientific fields that use significance tests, statistical power is important for successful 
replications of significant results because it is the long-run success rate in a series of exact 
replication studies. For any population of published results, there is a population of power 
values of the statistical tests on which conclusions are based. We give exact theoretical results 
showing how selection for significance affects the distribution of statistical power in a 
heterogeneous population of significance tests. In a set of large-scale simulation studies, we 
compare four methods for estimating population mean power of a set of studies selected for 
significance (a maximum likelihood model, extensions of p-curve and p-uniform, & z-curve). 
The p-uniform and p-curve methods performed well with a fixed effects size and varying 
sample sizes.  However, when there was substantial variability in effect sizes as well as sample 
sizes, both methods systematically overestimate mean power. When the assumptions of the 
maximum likelihood were satisfied, it produced the most accurate estimates for 
heterogeneity in effect sizes, but z-curve produced more accurate estimates when the 
assumptions of the maximum likelihood model were not met. We recommend the use of z-
curve to estimate the typical power of significant results, which has implications for the  
replicability of significant results in psychology journals. 
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The purpose of this paper is to develop and 
evaluate methods for predicting the success rate if a set 
studies with significant results were replicated exactly.  
We call this statistical property, the average power of a 
set of studies.  Average power can range from the 
criterion for a type-I error, if all significant results are 
false positives, to 100%, if the statistical power of original 
studies approaches 1.  We agree with Simonsohn, Nelson, 
and Simmons (2014) that average power can be used 
to quantify the degree of evidential value in a set of 
studies.  While studies with average power of 80% or 
more provide strong support for most hypotheses, studies 
with 20% power provide weak evidence and may 
contain a large number of false positive results or true 
positive results with negligible effect sizes.

Estimating average power of original studies is interesting 
because it is tightly connected with the outcome of 
replication studies (Greenwald, Gonzalez, Harris, & Guthrie, 
1996; Yuan & Maxwell, 2005). To claim that a finding has 
been replicated, a replication study should reproduce a

Most of the ideas in this paper were developed jointly. An ex-
ception is the z-curve method, which is solely due to Schimmack. 
Brunner did all the programming and derived the proofs of the 
Principles. We would like to thank Dr. Jeffrey Graham for providing 
remote access to the computers in the Psychology Laboratory at the 
University of Toronto Mississauga. Thanks to Josef Duchesne for 
technical advice.  

produce a significant result, and the probability of a 
successful replication is a function of statistical power. 
Thus, if reproducibility is a requirement of good science 
(Bunge, 1998; Popper, 1959), it follows that high 
statistical power is a necessary condition for quality 
science.  Even if a different statistical approach is used, only 
studies with high true signal-to-noise ratios (i.e., non-
centrality parameters) can produce consistent evidence of a 
predicted effect.  

Information about the average power of studies is also 
useful because selection for significance increases the type-I 
error rate and inflates effect sizes (Ioannidis, 2008). 
However, these biases are relatively small if the original 
studies had high power.  Knowledge about the average 
power of studies is also useful to adjust power analyses for 
the planning of future studies.  If average power is high, 
replication studies can use the same sample sizes as original 
studies, but if average power is low, sample sizes need to be 
increased to avoid false negative results.  

Given the practical importance of power for good science, 
it is not surprising that psychologists have started to 
examine the evidential value of results published in 
psychology journals.  At present, two statistical methods 
have been used to make claims about the average power of 
psychological research; namely p-curve (www.p-curve.com) 
and z-curve (https://replicationindex.wordpress.com/), but 
so far neither method has been peer-reviewed.
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Statistical Power Before and After A Study Has Been 
Conducted

Before we proceed, we would like to clarify that statistical 
power of a statistical test is defined as the probability of 
correctly rejecting the null hypothesis (Neyman & Pearson, 
1933). This probability depends on the sampling error of a 
study and the population effect size.  The traditional 
definition of power does not consider effect sizes of zero 
(false positives) because the goal of a priori power planning 
is to ensure that a non-zero effect can be demonstrated. 

However, our goal is not to plan future studies, but to 
analyze results of existing studies.  For post-hoc power 
analysis, it is impossible to distinguish between true 
positives and false positives and to estimate the average 
power conditional on the unknown status of hypotheses 
(i.e., the null-hypothesis is true or false). Thus, we use the 
term average power as the probability of correctly or 
incorrectly rejecting the null-hypothesis (Sterling, 
Rosenbaum, & Weinkam, 1995).  As a result, post-hoc 
average power includes an unknown percentage of false 
positives that have a probability equal to alpha (typically 5%) 
to reproduce a significant result in a replication attempt.  At 
the same time, we believe that the strict null-hypothesis is 
rarely true in psychological research (Cohen, 1994). 

It would be ideal if it were possible to estimate the power 
of a single statistical test that supports a particular finding. 
Unfortunately, well-documented problems with the 
“observed power" method suggest that the goal of estimating 
the power of an individual test may be out of reach (Boos & 
Stefanski, 2012; Hoenig & Heisey, 2001). The main 
problem is that estimates for a single result are too variable 
to be practically useful (Yuan & Maxwell, 2005; but see 
Anderson, Kelley, & Maxwell, 2017). Thus, we focus on 
estimating mean power of a set of studies. The number of 
studies has to  be reasonably large to obtain useful estimates. 
We used a minimum of 15 studies for our simulations. 

It is important to distinguish our undertaking from that of 
Cohen (1962) and follow-up studies by L.J. Chase and R. B. 
Chase (1976) and Sedlmeier and Gigerenzer (1989). In 
Cohen’s classic survey of power in the Journal of Abnormal 
and Social Psychology, the results of the studies were not 
selected in any way. Power was never estimated. It was 
calculated exactly for a priori effect sizes deemed “small," 
“medium" and “large." If a “medium"effect size referred to the 
population mean (which Cohen never claimed), power at the 
mean effect size is still not the same as mean power.

Two Populations of Studies

 We distinguish two populations of tests. One population 
contains all studies that have been conducted. This 
population contains significant and non-significant results. 
The other population contains the subset of studies that 
produced a significant result.  We focus on the population of

 studies selected for significance for two reasons.  

   First, often non-significant results are not available 
because journals selectively publish significant results 
(Rosenthal, 1979; Sterling, 1959; Sterling et al., 1995).  
Second, only significant results are used as evidence for a 
theoretical prediction. It is irrelevant how many false 
positives were tested and not reported because they 
fortunately produced non-significant results (true 
negatives).  Psychological theories rests on studies that 
produced significant results. Thus, only the evidential value 
of significant results is relevant for evaluations of the 
robustness of psychology as a science.  In short, we are 
interested in statistical methods that can estimate the 
average power of a set of studies with significant results only.

The Study Selection Model

We developed a number of theorems that specify how 
selection for significance influences the distribution of 
power. These theorems are very general. They do not 
depend on the particular population distribution of power, 
the significance tests involved, or the Type I error 
probabilities of those tests. They do not even depend on the 
appropriateness of the tests or the assumptions of the tests 
being satisfied. The only requirement is that for every study 
with a specific population effect size, sample size, and 
statistical test, the probability of a result being selected is the 
true power of a study.  We discuss the two most 
important theorems in detail. All six theorems are 
provided in the appendix, along with an illustration of 
the theorems by simulation.

First Theorem: Population mean true power equals the 
overall probability of a significant result.   

Theorem 1 establishes the central importance of 
population mean power after selection for significance for 
predicting replication outcomes.  Think of a coin-tossing 
experiment in which a large population of coins is 
manufactured, each with a different probability of heads; 
that is, these coins are not fair coins with equal probabilities 
for both sides.  Also consider heads to be successes or wins.  
Repeatedly tossing the set of coins and counting the number 
of heads produces an expected value of the number of 
successes.  For example, the experiment may yield 60% 
heads and 40% tails.  While the exact probability of 
showing heads of individual coins are unknown, the 
observable success rate is equivalent to the mean power of all 
coins.  Theorem 1 states that success rate and mean power 
are equivalent even if the set of coins is a subset of all coins. 
For example, assume all coins were tossed once and 
only coins showing heads were retained.  Repeating the coin 
toss experiment, we would still find that the success rate 
for the set of selected coins matches the mean 
probabilities of the selected coins. 

Actually, publication bias is not a requirement. But selection is. If you only select statistically significant results ("findings") and there is no publication bias at all, one still needs to correct for the selection.

See Van Aert et al for an explanation, I believe the Bayesian snapshot in Plos puts this most clearly.

It is really unfortunate that many scientists tend to forget this phenomenon called regression to the mean, which appears when two criteria are satisfied: (I) selection, (ii) outcome is subject to error. 

Omit, as I believe this is not generally true. This is only true if the function is concave. The power function is not concave on its complete domain, so counter examples can be constructed.

expand literature

but this is impossible?!? Please check carefully!
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Figure 1. Uniform distribution of power before selection

Expected power = 0.525 before selection, 0.635 after selection

Density after selection   
Density before selection

after selection for significance is triangular – a substantial
change. In Figure 2, power before selection is less hetero-
geneous, and higher on average. Consequently, the distribu-
tions of power before selection and after selection are much
more similar. In both cases, though, mean true power after
selection for significance is higher.

Figure 2. Chi-squared distribution of power before selection
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In the Appendix, Principle 2 is used to derive the remain-
ing principles. The next Principle shows how mean power
after selection is related to mean power before selection. In
the simulations, it is used to choose the parameters of distri-
butions before selection so that expected power after selec-
tion will have some desired value. Finding exactly the right
values by trial and error is difficult.

Principle 3 Population mean power after selection for sig-
nificance equals the population mean of squared power be-
fore selection, divided by the population mean of power be-
fore selection.

It is also possible to go back from power after selection to
mean power before selection, again without knowing the full
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Second Theorem: The effect of selection for significance is to 
multiply the probability of each power value by a 
quantity equal to the power value itself, divided by 
population mean power before selection. If the distri-
bution of power is continuous, this statement applies to 
the probability density function. 

Figure 1 illustrates Theorem 2 for a simple, arti-
ficial example in which power before selection is uni-
formly distributed on the interval from 0.05 to 
1.0. The corresponding distribution after selection for 
significance is triangular – a substantial change. In Figure 
2, power before selection is less heterogeneous and 
higher on average. Consequently, the distributions of 
power before selection and after selection are much 
more similar. In both cases, though, mean true power 
after selection for significance is higher than mean 
true power before selection for significance. 

Theorem 2 may seem overly simplistic and unrealistic.  
Few researchers conduct a study and give up after a first 
attempt produces a non-significant result.  Instead they may 
try several times with slight variations of the study and not 
report studies that failed to produce significant results.  For 
example, Morewedge, Gilbert, and Wilson (2014) 
explained that they did not report "some preliminary 
studies that used different stimuli and different procedures 
and that showed no interesting effects.  (e.g., 
Morewedge, Gilbert, & Wilson, 2014).  From a theoretical 
perspective, it is important that all studies tested the same 
hypothesis and that more than one non-significant 
finding was not reported. However, for the estimation of 
mean power of the studies that were selected, it is 
irrelevant that all studies tested the same hypotheses.  Each 
study that was conducted by Morewedge et al. has an 
unknown true power to produce a significant result. 
Theorem 2 implies that the mean power

Figure 1.  Uniform distribution of power before selection
Expected power = 0.525 before selection, 0.635 after selection

of the studies that produced a significant result is 
greater than the mean power of the studies that were not 
selected as well as the mean power of the total set of 
studies; with the exception when all studies are false 
positives.  Thus, the estimation methods that we tested can 
be used for realistic scenarios like the one described by 
Morewedge et al.  

Estimation Methods

In this section, we describe four methods for estimating 
population mean power after selection for 
significance under conditions of heterogeneity in sample 
size and effect size. 

Notation and statistical background

To present our methods formally, it is necessary to 
introduce some statistical notation. Rather than using 
traditional notation from statistics that might make it 
difficult for non-statisticians to understand our method, we 
follow Simonsohn et al. (2014a), who employed a 
modified version of the S syntax (Becker, Chambers, 
& Wilks, 1988) to represent probability distri-
butions. The S language is familiar to psychologists who use 
the R statistical software (R Core Team, 2012). The 
notation also makes it easier to implement our methods in R, 
particularly in the simulation studies.

The outcome of an empirical study is partially determined 
by random sampling error, which implies that statistical 
results will vary across studies. This variation is expected to 
follow a random sampling distribution. Each statistical test  
has its own sampling distribution. We will use the symbol 
T to denote a general test statistic; it could be a t-statistic, 
F, chi-squared, Z, or something more obscure. Assume 
an upper-tailed test, so that the null hypothesis will be

Figure 2. Chi-squared distribution of power before selection
Expected power = 0.700 before selection, 0.714 after selection
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rejected at a specific significance level (usually .05), 
when the continuous test statistic T exceeds a critical value c.

   Typically there is a sample of test statistic values,  T1...Tk, 
but when only one is being considered the subscript will be 
omitted. The notation p(t) refers to the probability under the 
null hypothesis that T is less than or equal to the fixed 
constant t. The symbol p would represent pnorm if the test 
statistic were standard normal, pf if the test statistic had an 
F-distribution, and so on. While p(t) is the area under the
curve, d(t) is the value on the y axis for a particular t, as
in dnorm. Following the conventions of the S language, the
inverse of p is q, so that p(q(t)) = q(p(t)) = t.

Sampling distributions when the null-hypothesis are 
true are well-known to psychologists because they 
provide the foundation of null-hypothesis significance 
testing. Most psychologists are less familiar with non-
central sampling distributions (see Johnson et al. 1995, 
for a detailed and authoritative treatment). When 
the null hypothesis is false, the area under the 
curve of the test statistic’s sampling distribution is 
p(t,ncp), representing particular cases like 
pf(t,df1,df2,ncp). The initials ncp stand for 
“noncentrality parameter." This notation applies directly 
when T has one of the common non-central 
distributions like the noncentral t, F or chi-squared under 
the alternative hypothesis, but it can be extended to the 
distribution of any test statistic under any specific 
alternative, even when the distribution in question is 
technically not a non-central distribution. The non-
centrality parameter is positive when the null hypothesis 
is false, and statistical power is a monotonically 
increasing function of the non-centrality parameter. 
This function is given explicitly by Power = 1 - p(c,ncp).

For the most important non-central distributions (Z, 
t, chisquared and F), the non-centrality parameter can 
be factored into the product of two terms. The first term 
is an increasing function of sample size, (n) and the second 
term is a function of the unknown parameters that reflects 
the standardized effect sizes (es). In symbols, 

distribution. The non-centrality parameter is positive when 
the null hypothesis is false, and statistical power is a 
monotonically increasing function of the non-centrality 
parameter. This function is given explicitly by Power = 1 −
p(c,ncp).

For the most important non-central distributions (Z, t, chi-
squared and F), the non-centrality parameter can be factored 
into the product of two terms. The first term is an increasing 
function of sample size, and the second term is a function 
of the unknown parameters that reflects how wrong the null 
hypothesis is. In symbols,

Thus, specification of effect sizes is determined by con-
venience and interpretability. This usage is consistent with 
that of Cohen (1988), who freely uses “effect size" to 
describe various functions of the model parameters, even 

for the same statistical test (Grissom & Kim, 2012). As an 
example of Equation (1), consider for example a standard 
F-test for difference between the means of two nor-mal
populations with a common variance. After some
simplification, the non-centrality parameter of the non-
central F may be written as

ncp = n ρ (1 − ρ) d2,

where n = n1 + n2 is the total sample size, ρ = n1

the proportion of cases allocated to the first t r eatment, and

d =
|µ1−µ2 |

σ
is Cohen’s (1988) effect size for the two-sample

problem. This expression for the non-centrality parameter
can be factored in various ways to match Equation 1; for ex-
ample, f1(n) = n ρ (1 − ρ) and f2(es) = es2. Note that this
is just an example; Equation 1 applies to the non-centrality
parameters of the non-central Z, t, chi-squared and F distri-
butions in general. Thus for a given sample size and a given
effect size, the power of a statistical test is

Power = 1 − p(c, f1(n) · f2(es)). (2)

The function f2(es) can also be applied to sets of studies with 
different traditional effect sizes. For example, es could be 
Cohen’s d, and the alternative effect size es′ could be the 
point-biserial correlation r (Cohen, 1988, p. 24). Sym-
bolically, es′ = g(es). Since the function g(es) is monotone 
increasing, a corresponding inverse function exists, so that 
es = g−1(es′). Then Equation (2) becomes

Power = 1 − p(c, f1(n) · f2(es))
= 1 − p(c, f1(n) · f2

(
g−1(es′)

)
)

= 1 − p(c, f1(n) · f ′2
(
es′

)
),

′
2where f just means another function f2. That is, if the def-

inition of effect size is changed (in a monotone way), the 
change is absorbed by the function f2, and Equation (2) still 
applies.

  After this introduction of notation and a basic 
introduction of power, non-centrality parameters, sample 
sizes, and effect sizes, we are ready to introduce 
four estimation methods for the estimation of mean power 
based on a set of studies that vary in power with known 
sample sizes and unknown population effect sizes. 
The four methods are pcurve, p-uniform, a 
Maximum Likelihood model, and zcurve.

ncp =  f1(n) · f2(es) . (1)
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=
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)

=
p(t, f1(n) · f2(es)) − p(c, f1(n) · f2(es))

1 − p(c, f1(ni) · f2(es))
,

Note that since the sample sizes of the tests may differ, the 
symbols p, n and c as well as T may have different refer-ents 
for j = 1, . . . , k test statistics. The subscript j has been 
omitted to reduce notational clutter.

If the modified null hypothesis were true, the modified 
p-values would have a uniform distribution. Both p-curve
2.1 and p-uniform choose as estimated effect size the value
of es that makes the modified p-values most nearly uniform.
They differ only in the criterion for deciding when
uniformity has been reached.

Estimation Methods

The first two estimation methods are based on methods 
that were developed for the estimation of effect sizes. Our 
use of these methods for the estimation of mean power is 
an extension of these methods. Our simulation studies 
should not be considered tests of these methods for the 
estimation of effect sizes. We developed these methods 
simply because power is a function of effect size and 
sample size and sample sizes are known. Thus, only 
estimation of unknown effect sizes is needed to estimate 
power.  In fact, power estimation is a simple additional step 
to compute power for each study as a function of the effect 
size estimate and the sample size of each study.  These 
methods should have no problem in simulations with a fixed 
effect size. More interesting is their performance with 
heterogeneity in effect sizes.

P-curve 2.1 and p-uniform

A p-curve method for estimation of mean power is
available online (www.p-curve.com). It is important to point 
out that this method differs from the p-curve method that 
we developed. The online p-curve method is called p-
curve4.06. We built our p-curve method on the effect 
size p-curve method with the version code p-curve2.0 
(Simonsohn et al., 2014). Hence, we refer to our p-curve 
method as p-curve2.1. P-uniform is very similar to p-
curve (vanAsssen, vanAert, & Wicherts, 2014). Both 
methods aim to find an effect size that produces a 
uniform distribution of p-values between .05 and .00.  Since 
we developed our p-uniform method for power 
estimation, the p-uniform has developed a better est-
imation method. We conducted our studies before this 
new method was available. Thus, the performance of 
p-uniform in our simulation studies should not be
interpreted as evidence for or against the new p-uniform 
method.

 To find the best fitting effect size for a set of observed 
test statistics, p-curve 2.1 and p-uniform compute p-values 
for various effect sizes and chose the effect size that yields 
the best approximation of a uniform distribution. If the 
modified null hypothesis that effect size = es is true, the 
cumulative distribution function of the test statistic is the 
conditional probability

k

P-curve 2.1 is based on a Kolmogorov-Smirnov test for
departure from a uniform distribution, choosing the es 
value yielding the smallest value of the test statistic. 
P-uniform is based on a different criterion. Denoting by Pj
the modified p-value associated with test j, calculate Y =
− j=1Σ n(P j), where ln is the natural logarithm. If the P j
values were uni-formly distributed, Y would have a gamma
distribution with expected value k, the number of tests. The
P-uniform esti-mate is the modified null hypothesis effect
size es that makes Y equal to k, its expected value under
uniformity.

These technologies are designed for heterogeneity in 
sample size only, and assume a common effect size for all the 
tests. Given an estimate of the common effect size, estimated 
power for each test varies only as a function of sample size. 
which can be determined by Expression 2 because sample 
sizes are known. Population mean power can then be 
estimated by averaging the k power estimates. 

Maximum likelihood model

Our maximum likelihood (ML) model also first estimates 
effect sizes and then combines effect size estimates with 
known sample sizes to estimate mean power. Unlike p-
curve2.1 and p-uniform, the ML model allows 
for heterogeneity in effect sizes. In this way, the model is 
similar to Heges and Vevea's (1996) model for 
effect size estimation before selection for significance. 
To take selection for significance into account, the 
likelihood function of the ML model is a product of k 
conditional densities; each term is the conditional density 
of the test statistic T j, given N j = n j and T j > c j, the critical 
value.

Likelihood function. The model assumes that sample sizes 
and effect sizes are independent before the selection for 
significance. Suppose that the distribution of effect sizes before 
selection is continuous with probability density gθ(es). This 
notation indicates that the distribution of effect sizes depends 
on an unknown parameter or parameter vector θ. In the 
appendix, it is shown that the likelihood function (a function 
of θ) is a product of k terms of the form

1 − F0(T ) =
1 − p(T, f1(n) · f2(es))
1 − p(c, f1(n) · f2(es))

.

F0(t) = Pr{T ≤ t|T > c}

using ncp = f1(n) · f2(es) as given in Equation 1. The corre-
sponding modified p-value is

1
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∫ ∞
0 d(t j, f1(n j) · f2(es))gθ(es) des∫ ∞

0

[
1 − p(c j, f1(n j) · f2(es))

]
gθ(es) des

, (3)

Z-curve

Z-curve follows a traditional meta-analyses that converts
p-values into Z-scores as a common metric to integrate
results from different original studies (Rosenthal, 1979;
Stouffer, Suchman, DeVinney, Star, & Williams, 1949). The
use of Z-scores as a common metric makes it possible to fit a
sin-gle function to p-values arising from different statistical
methods and tests. The method is based on the simplicity and
tractability of power analysis for the one-tailed Z-test, in
which the distribution of the test statistic under the alter-
native hypothesis is just a standard normal shifted by a fixed
quantity that plays the role of a non-centrality parameter, and
will be denoted by m. Input to the Z-curve is a sample of p-
values, all less than α = 0.05. These p-values are processed
in several steps to produce an estimate.

1. Convert p-values to Z-scores. The first step is to imag-
ine, for simplicity, that all the p-values arose from two-
tailed Z-tests in which results were in the predicted
direction. This is equivalent to an upper-tailed Z-test with
significance level α/2. In our simulations, alpha was set
to .05, which results in a selection criterion of z = 1.96.
The conversion to z-scores (Stouffer et al., 1949) consists
of finding the test statistic Z that would have produced
that p-value. The formula is

Z = qnorm(1 − p/2). (5)

2. Set aside Z > 6. For convenience, we set aside
extreme z-scores. This avoids fitting a large number
of normals to extremely small p-values.  This step
has no influence on the final result because all of
these p-values have an observed power of 1.00
(rounded to the second decimal). This set also avoids
numerical problems that arise from small p-values
rounded to 0.

3. Fit a finite mixture model. Before selecting for sig-
nificance and setting aside values above six, the dis-
tribution of one test statistic Z given a particular
non-centrality parameter value m is normal with
mean m  and a standard deviation of 1. Afterwards, it
is a standard normal distribution truncated on the left
at the critical value c (usually 1.96 for alpha = .05
two-tailed) truncated on the right at 6, and re-scaled
to have area one under the curve.

Because of heterogeneity in sample size and effect
size, the full distribution of Z is an average of trun-
cated normals, with potentially a different value of m
for each member of the population. As a simplifica-
tion, heterogeneity in the distribution of Z is repre-
sented as a finite mixture with r components. The
model is equivalent to the following two-stage sam-
pling plan. Airst, select a non-centrality parameter m
from m1, . . . , mr according to the respective probabil-
ities w1, . . . , wr. Then generate Z from a normal dis-
tribution with mean m and standard deviation one. Ai-
nally, truncate and re-scale.

Under this approximate model, the probability
density function of the test statistic after selection for
significance is

where the integrals denote areas under curves that can be 
computed with R’s integrate function. The maximum 
likelihood estimate is the parameter value yielding the 
the highest product. To be applicable to actual data, the 
ML model has to make as-sumptions about the 
distribution of effect sizes.  The ML model that was used 
in the simulation studies assumed a gamma distribution 
of effect sizes.  A gamma distribution is defined by two 
parameters that need to be estimated based on the data. 
The effect sizes based on the most likely distribution 
are then combined with information about sample 
sizes to obtain power estimates for each study. An 
estimate of population mean power is then pro-
duced by averaging estimated power for the k 
significance tests.  As shown in the appendix, the terms to 
be averaged are

∫ ∞∫0
[
1 − p(c j, f1(n j) · f2(es))

]2 ̂gθ(es) des
∞

0

[
1 − p(c j, f1(n j) · f2(es))

] ̂gθ(es) des
. (4)

f (z) =

r∑
j=1

w j
dnorm(z − m j)

pnorm(6 − m j) − pnorm(c − m j)
.

(6)
The finite mixture model is only an approximation 
because it approximates k standard normal 
distribution with a smaller set of standard normal 
distributions. Preliminary studies showed that three 
standard normals are often sufficient. Thus, the z-
curve method that was used in the simulation 
studies approximated the observed distribution of 
z-scores between 1.96 and 6 with three truncated
standard normal distributions. The observed density
distribution was estimated based on the observed z-
scores using the kernel density estimate (Silverman,

footnote that other statistics can be and are used (refer to Van Aert et al in perspectives), and that Van Aert et al recommended to use a statistic based upon the Irwin-Hall distribution (the sum of uniformly distributed variables).

You may add that changing the statistic will not change the trends in your results (personal ccommunication MvA).

, that is, the distribution of modified p-values will still follow the uniform distribution when true effect size is fixed and sample sizes are heterogeneous.
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 1986) as implemented in R’s density function, with 
the default settings. 

4. Estimate mean power for Z < 6. The estimate of rejec-
tion probability upon replication for Z < 6 is the area
under the curve above the critical value, with weights
and non-centrality values from the curve fitting step.
The estimate is

` =

r∑
j=1

ŵ j(1 − pnorm(c − m̂ j)), (7)

where ŵ1, . . . , ŵr and m̂1, . . . , m̂r are the values located 
in Step 3. Note that while the input data are censored 
both on the left and right as represented in Forumula 6, 
there is no truncation in Formula 7 because it 
represents the distribution of Z upon replication.

5. Re-weight using Z > 6. Let q denote the proportion of
the original set of Z statistics with Z > 6. Again, we
assume that the probability of significance for those
tests is essentially one. Bringing this in as one more
component of the mixture estimate, the final estimate
of the probability of rejecting the null hypothesis for
exact replication of a randomly selected test is

Zest = (1 − q) ` + q · 1 (8)

= q + (1 − q)
r∑

j=1

ŵ j(1 − pnorm(c − m̂ j))

By Theorem 1, this is also an estimate of population true 
mean power after selection.  Unlike the other estimation 
methods, z-curve does not require information about sample 
size.  Unlike p-curve2.1 and p-uniform, z-curve does not 
assume a fixed effect size. Finally, z-curve does not make 
assumptions about the distribution of true effect sizes or true 
power.  

Simulations

The simulations reported here were carried out using the R 
programming environment (R Core Team, 2012) distributing 
the computation among 70 quad core Apple iMac computers. 
The R code is available in the supplementary materials, at 
http://www.utstat.toronto.edu/∼brunner/zcurve2018. 
In the simulations, the four estimation methods (p-curve 2.1, 
p-uniform, ML model, & z-curve) were applied to samples
of significant chi-squared or F statistics, all with p < 0.05.
This covers most cases of interest, since t statistics may be
squared to yield F statistics, while Z may be squared to yield
chi-squared with one degree of freedom.

Heterogeneity in Sample Size Only: Effect size fixed

Sample sizes after selection for significance were ran-
domly generated from a Poisson distribution with mean 86, 
so that they were approximately normal, with population 
mean 86 and population standard deviation 9.3. Population 
mean power, number of test statistics on which the estimates 
were based, type of test (chi-squared or F) and (numerator) 
degrees of freedom were varied in a complete factorial de-
sign. Within each combination, we generated 10,000 sam-
ples of significant test statistics and applied the four estima-
tion methods to each sample. In these simulations, it was not 
necessary to simulate test statistic values and then literally 
select those that were significant. A great deal of computa-
tion was saved by using the R functions rsigF and rsigCHI,
(available from the supplementary materials) to simulate di-
rectly from the distribution of the test statistic after selection. 
A description of the simulation method and a proof of its 
correctness are given in the appendix.

The first simulation had a 4 x 5 x 3 design with true 
power after selection for significance (0.05, 0.25, 0.50, & 
0.75), number of test statistics k on which estimates were 
based (15, 25, 50, 100, & 250) and numerator degrees of 
freedom (just degrees of freedom for the chi-squared tests; 1, 
3 & 5) as factors. To obtain the desired levels of power, we 
used the effect size metric f for F-tests and w for chi-squared 
tests (Cohen, 1988, p. 216).

Because the pattern of results was similar for F and chi-
squared tests and for different degrees of freedom, we report 
details for F-tests with one numerator degree of freedom; 
preliminary data mining of the psychological literature 
suggests that this is the case most frequently encountered in 
practice.  Full results are given in the supplementary 
materials.

Average performance. Table 1 shows means and standard 
deviations of mean power based on 10,000 simulations in 
each cell of the design.  Differences between the estimates 
and the true values represent systematic bias in the 
estimates. The results show that all methods performed 
fairly well, with z-curve showing a bit more bias than the 
other methods. 

   The default settings are Gaussian approximation and 
512 nodes. The most critical default parameter is the 
bandwidth. The default bandwidth defaults to 0.9 
times the minimum of the standard deviation and the 
interquartile range divided by 1.34 times the sample 
size to the negative one-fifth power  
(http://127.0.0.1:23966/library/stats/html/density.htm 
l).   

   Secifically, the fitting step proceeds as follows. First, 
obtain the kernel density estimate based on the sample 
of significant Z values, re-scaling it so that the area un-
der the curve between 1.96 and 6 equals one. Call this 
the conditional density estimate. Next, calculate the 
conditional density estimate at a set of equally spaced 
points ranging from 2 to 6. Then, numerically choose 
w j and m j values so as to minimize the sum of abso-
lute differences between the conditional density esti-
mate and (6).

http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
http://www.utstat.toronto.edu/~brunner/zcurve2018
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Table 1
Average estimated population mean power for heterogeneity
in sample size only: F-tests with numerator d f = 1

Number of Tests
15 25 50 100 250

Population Mean Power = 0.05
P-curve 2.1          .083        .073        .064        .059        .055 

          (.059)      (.039)     (.024)     (.015)     (.007)

Absolute error of estimation.  Mean accuracy across large 
sets of simulation studies does not provide information 
about estimation errors in individual studies. We computed 
mean absolute errors, abs(True Power - Estimated Power), 
to provide this information. Table 2 shows the results, which 
are consistent with those in Table 1, with z-curve 
performing slightly worse than the other methods, and for 
all methods estimation errors decrease with increasing 
number of studies. 

Table 2
Mean absolute error of estimation for heterogeneity in 
sam-ple size only: F-tests with numerator d f = 1

Number of Tests
15 25 50 100 250

Population Mean Power = 0.05
P-curve 2.1 3.32 2.25 1.41 0.93 0.52
P-uniform 2.57 1.75 1.11 0.76 0.43
MaxLike 2.59 1.74 1.09 0.73 0.39
Z-curve 6.53 4.90 3.38 2.44 1.79
Population Mean Power = 0.25
P-curve 2.1 12.94 10.49 7.69 5.53 3.64
P-uniform 12.11 9.87 7.17 5.18 3.38
MaxLike 12.07 9.76 7.05 5.10 3.32
Z-curve 13.55 11.09 8.21 5.96 3.87
Population Mean Power = 0.50
P-curve 2.1 14.32 11.20 8.14 5.80 3.67
P-uniform 13.93 10.68 7.80 5.56 3.51
MaxLike 13.61 10.41 7.60 5.39 3.41
Z-curve 12.42 9.91 7.44 5.48 3.59
Population Mean Power = 0.75
P-curve 2.1 9.77 7.59 5.38 3.72 2.35
P-uniform 9.79 7.59 5.34 3.71 2.32
MaxLike 9.33 7.23 5.11 3.53 2.21
Z-curve 8.34 6.96 5.56 4.30 3.13

P-uniform           .076       .067         .061        .058        .054 
(.050)    (.032)      (.019)     (.012)     (.006) 

ML-model          .076        .067         .061  .057        .054 
(.050)    (.033)      (.020)  (.012)     (.006) 

Z-curve               .086        .071         .058        .049        .040 
(.088)     (.065)      (.044)  (.031)     (.019) 

Population Mean Power = 0.25
P-curve 2.1          .269        .261        .256        .253        .251 

          (.156)      (.128)     (.095)     (.069)     (.046)
P-uniform           .256       .253         .252        .251        .251 

(.147)    (.121)      (.089)     (.065)     (.042) 
ML-model          .260        .255         .253        .251        .251 

(.146)    (.120)      (.087)     (.064)     (.042) 
Z-curve               .314        .305         .293        .280        .268 

(.155)     (.127)      (.093)     (.068)     (.045) 
Population Mean Power = 0.50
P-curve2.1        .484         .491         .496        .497        .499  

(.175)      (.139)      (.102)     (.073)     (.046) 
P-uniform        .473        .485         .493         .496        .499       

(.170)      (.133)     (.097)      (.070)     (.044) 
ML-model       .479         .489         .495        .497         .499   

(.166)      (.130)      (.095)      (.068)     (.045) 
Z-curve            .513         .516          .513         .508        .502   

       (.151)      (.121)    (.091)   (.068)     (.045) 

Population Mean Power = 0. 5
P-curve2.1        . 8         .         .         .7         .   

(.1 )      (. )     (. )     (.0 )     (.0 ) 
P-uniform        .7         .          .         .         .        

(.1 )     (. )     (.0 7)     (.0 7)     (.0 ) 
ML-model       .7          .          .         .          . 49   

(.166)      (.130)      (.095)      (.068)     (.045) 
Z-curve            .704         .712        .717         .723        .728

(.105)      (.084)     (.064)      (.048)     (.033) 
            .

Heterogeneity in Both Sample Size and Effect Size

   The  results of the first simulation study were reassuring in 
that our methods performed well under conditions that were 
consistent with model assumptions.  P-curve, p-uniform and 
the ML model performed better than z-curve because these 
methods use information about sample sizes and made the 
correct assumption that all studies have the same population 
effect size. However, our main goal was to test these 
methods under more realistic conditions when effect sizes 
vary across studies. 

   To model heterogeneity in effect size, we let effect size be-
fore selection vary according to a gamma distribution (John-
son, Kotz, & Balakrishnan, 1995), a flexible continuous dis-
tribution taking positive values. Sample size before selection 
remained Poisson distributed with a population mean of 86. 
For convenience, sample size and effect size were inde-
pendent before selection for significance. Maximum likeli-
hood correctly assumed a gamma distribution for effect size, 
and the likelihood search was over the two parameters of the 
gamma distribution. The other three methods were not 
modified in any way. P-curve 2.1 and p-uniform continued 
to assume a fixed effect size, and z-curve continued to 
assume heterogeneity in the non-centrality parameter 
without distinguishing between heterogeneity in sample size 
and heterogeneity in effect size. 

You now average over how many conditions, in each cell? Please state explicitly. 
Say also a bit about variation across conditions; is performance about equal in all conditions, or does performance differ across conditions? I do not expect so, but we want to know if this is the case, and if it is the case, please all tell us where which methods sucks most.
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We used the same design as in Study 1 with one additional 
factor: amount of heterogeneity in effect size, as represented 
by the standard deviation of the effect size distribution. We 
dropped the condition with 5% power because it implies a 
fixed effect size of 0. Hence, the factors were true population 
mean power (0.25, 0.50 or 0.75), standard deviation of effect 
size after selection (0.10, 0.20 or 0.30), number of test 
statistics upon which estimates of mean power are based (k 
=100, 250, 500, 1,000 or 2,000), experimental degrees of 
freedom (1, 3 or 5), and type of test (F or chi-squared). 
Within each cell of the design, ten thousand significant chi-
squared test statistics were randomly generated, and popula-
tion mean power was estimated using all four methods. For 
brevity, we present results for F-tests with numerator d f = 1. 
Full results are given in the supplementary materials.

The use of an F-statistic with 1 degree of freedom also has 
the advantage that effect size distributions could be 
transformed into Cohen's d-values, which are a familiar unit 
for standardized effect sizes.  Figure 3 shows the distribution 
of effect sizes after selection for significance for the three 
levels of heterogeneity and power.

Figure 3. Distribution of effect sizes (Cohen's d) for the 
simulations in Study 2. 

When there is heterogeneity in effect size, maximum like-
lihood is computationally demanding. Using R’s integrate 
function, the calculation involves fitting a histogram to each 
curve and then adding the areas of the bars. Numerical 
accuracy is an issue, especially for ratios of areas when the 
denominators are very small. In addition, it is necessary 

to try more than one starting value to have a hope of locating 
the global maximum because the likelihood function 
has many local maxima. In our simulations, we used 
three random starting points.   The ML model benefited 
from the fact that it assumed a gamma distribution of effect 
sizes, which matched the simulated effect size distributions. 
In contrast, z-curve made no assumptions and the other two 
methods falsely assumed a fixed effect size.  

Average performance. Table 3 shows estimated popu-
lation mean power as a function of true population mean 
power.  Results were consistent with the differences in 
assumptions.  Pcurve2.1 and p-uniform overestimated 
mean power and this bias increased with increasing 
heterogeneity and increasing mean power.  Z-curve estimates 
were actually better than in the previous simulations with 
fixed effect sizes.  The maximum likelihood model had the 
best fit, presumably because it anticipated the actual effect 
size distribution.

Table 3
Average estimated power for heterogeneity in sample size 
and effect size based on k = 1,000 tests with df1 = 1

0.1 0.2 0.3
Population Mean Power = 0.25

017)   (.016)

 Standard Deviation

http://www.utstat.toronto.edu/~brunner/zcurve2018
starting points of what?
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Violating the Assumptions of the ML Model

In the preceding simulation study, heterogeneity in effect 
size before selection was modeled by a gamma distribution, 
with effect size independent of sample size before selection. 
The Maximum likelihood model had a substantial and 
arguably unfair advantage, since the simulation was con-
sistent with the assumptions of the ML model.  It is well 
known that maximum likelihood models are very accurate 
compared to other methods when their assumptions are met 
(Stuart & Ord, 1999, Ch. 18). We used a beta-distributoin to 
examine how the ML model performs when its 
assumptions of a gamma distribution is violated. 

In this simulation, z-curve may have the upper 
hand because it makes no assumptions about 
the distribution of effect sizes or the correlation 
between effect sizes and sample sizes. It is well-
known that selection for significance (e.g. 
publication bias) introduces a correlation between 
sample sizes and effect sizes. However, there might 
also be negative correlations between sample sizes 
and effect sizes before selection for significance if 
researchers conduct a priori power analysis to plan their 
studies or if researchers learn from non-significant results 
that they need larger samples to achieve significance. 
   The design of this simulation study was similar to the 
previous design, but we only simulated the most extreme 
heterogeneity (SD = .3) condition and added a factor for the 
correlations between sample size and effect size (r = 0, -.2, 
-.4, -.8).  As before, we ran 10,000 simulations in each 
condition. To make results comparable to the results in 
Table 4, we show the results for the simulation with k = 1,000 
per simulated meta-analysis.  
     Figure 4 shows the effect size distributions after selection 
for significance.  As before, effect sizes were transformed into 
Cohen's d-values so that they can be compared to the 
distributions in Figure 3.  Only the most extreme correlations 
of 0 and -.8 are shown to avoid cluttering the figure.  As 
shown in the Figure, the correlation has relatively little 
impact on the distributions. 

Figure 4.  Effect size distribution for Study 3

Absolute error of estimation. Table 4 shows mean ab-
solute error of estimation. It confirms the pattern of 
results seen in Table 3.  Most important are the large 
absolute errors for the two methods that assumed a fixed 
effect size.  These results show that fixed effect size 
models cannot be used for the estimation of mean power 
when there is substantial heterogeneity in power.  Again, 
this finding has no relevance for the performance of 
pcurve2.0 and p-uniform as methods for the estimation 
of the mean population effect size.  Our results are 
strictly limited to the methods that we developed for the 
purpose of estimating mean power. 

The results also show that the difference between z-
curve and the ML model are slight and have no practical 
significance. The good performance of z-curve is 
encouraging because it does not require assumptions 
about the effect size distribution.

Table 4
Mean absolute error of estimation in percentage points, for 
heterogeneity in sample size and gamma effect size based on 
k = 1, 000 F-tests with numerator d f = 1

SD of Effect size
0.1 0.2 0.3

Population Mean Power = 0.25
P-curve 2.1 2.87 3.16 7.08

4.50 44.38 69.90P-uniform
MaxLike 3.55 2.06 3.34
Z-curve 2.59 3.08 2.90
Population Mean Power = 0.50
P-curve 2.1 4.93 17.86 25.70

10.21 41.28 49.54P-uniform
MaxLike 1.80 1.49 1.50
Z-curve 2.12 2.19 2.23
Population Mean Power = 0.75
P-curve 2.1 7.45 17.75 21.23

11.08 24.17 24.99P-uniform
MaxLike 1.42 1.18 1.16
Z-curve 1.69 1.42 1.55

Still, not a large departure of ML!

More reasonable is a mixture distribution with a fixed proportion of studies with power = .05 (the true zero effects) in addition to 1-that proportion following a distribution (e.g. beta)

Again, include a sentence like "In total, our design had A (number) x B (number) x … = 1321 conditions.

A and B are the factors, the numbers their levels.

Why 1,000 if you have 10,000? This does not make sense to me.
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Absolute error of estimation. Table 6 shows mean absolute error 
of estimation. The most important results is that z-curve is  
consistently more accurate than the ML model.  The same 
result holds for smaller sets of studies (full details are 
given in the supplementary materials).

Table 6
Mean absolute error of estimation n percentage points, 
with beta effect size and sample size correlated with effect 
size: k = 1, 00 -tests with numerator d f = 1

Correlation between n and es
-0.8 -0.6 -0.4 -0.2 0.0

Population Mean Power = 0.25
P-curve 2.1 15.67 15.49 15.33 15.30 15.24
P-uniform 60.26 60.24 60.23 60.22 60.22
MaxLike 5.17 5.11 5.05 5.05 5.01
Z-curve 2.37 2.41 2.47 2.48 2.50
Population Mean Power = 0.50
P-curve 2.1 33.88 33.99 34.07 34.09 34.11
P-uniform 40.59 40.61 40.63 40.63 40.64
MaxLike 3.25 3.34 3.42 3.43 3.46
Z-curve 1.92 1.91 1.89 1.90 1.89
Population Mean Power = 0.75
P-curve 2.1 24.04 24.13 24.18 24.21 24.24
P-uniform 21.43 21.56 21.63 21.67 21.72
MaxLike 7.62 8.23 8.56 8.76 8.97
Z-curve 3.51 4.01 4.27 4.43 4.59

Correlation between n and es
-0.8 -0.6 -0.4 -0.2 0.0

Population Mean Power = 0.25
P-curve 2.1 .407    .405    .403   .403   .402 

  .043)      (.044)      (.043)     (.044)     (.044)
P-uniform         .853          .852         .852        .852        .852

         (.003)      (.004)      (.003)     (.004)     (.004)
MaxLike

       (.015)      (.015)       (.015)    (.015)      (.015)
Z-Curve            .232         .231          .230       .231         .230

(.022)     (.022)       (.022)     (.022)     (.021)

Population Mean Power = 0.50
P-Curve 2.1      .839         .840          .841       .841        .841

        (.022)      (.022)      (.022)     (.022)    (.022)
P-uniform        .906         .906         .906        .906        .906

(.004)      (.004)      (.004)     (.004)     (.004)
MaxLike           .532         .533         .533        .534        .534           

        (.018)     (.018)      (.018)     (.018)     (.018) 
Z-curve            .493          .494         .495       .495        .495

       (.023)      (.023)      (.023)    (.023)     (.023)

Population Mean Power = 0.75
P-curve2.1       .990          .991         .992       .992        .992

 (.002)       (.002)     (.002)     (.002)    (.002)
P-uniform       .964          .966         .966       .967        .967

(.003)       (.003)      (.003)    (.003)     (.003)
MaxLike          .826          .832         .836       .838        .840  

(.016)       (.016)     (.015)     (.015)     (.015)
Z-curve           .785           .790        .793        .794        .796

(.013)       (.013)     (.013)     (.013)     (.012) 

.302         .301          .300       .300         .300

We explored the cause of this systematic 
bias and found that it is caused by the default bandwidth 
method with smaller sets of studies. When we set the 
bandwidth to a value of 0.05, z-curve estimates with a 
correlation of zero were ..235, .492, and .743, respectively.  

5 
 

Discussion

In this paper, we have compared four methods for estimat-
ing the mean statistical power of a heterogeneous population 
of significance tests, after selection for significance. We have 
discovered and formally proved a set of theorems relating the 
distribution of power values before and after selection for 
significance to each other.  We then evaluated the 
performance of four methods that estimate the mean 
power of a set of studies selected for significance.  It follows 
from our first theorem that this estimate predicts the 
percentage of significant results if the original studies were 
replicated exactly.  

The most important result was that one of the methods, 
z-curve, produced the most accurate results under the most
difficult and realistic conditions; that is, effect sizes vary
across studies and the distribution of population effect sizes
is unknown.  We therefore recommend z-curve for meta-
analyses of mean power.  However, z-curve was the least
accurate method when all studies had the same effect size.
Thus, for sets of studies with little variability  in effect sizes
(e.g.  studies with the same protocol from different labs), it
may be beneficial to compare z-curve estimates with

http://www.utstat.toronto.edu/~brunner/zcurve2018
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estimates from other methods, such as the ML model, which 
produced the second best results.  We now discuss the 
practical implications of our results in the context of the 
replication crisis in psychological science. 

Mean Power and Replicability

   Several events in 2011 have triggered a crisis of confidence 
about the replicability and credibility of published findings 
in psychology journals.  As a result, there have been various 
attempts to assess the replicability of published results. The 
most impressive evidence comes from the Open Science 
Reproducibility project that conducted 100 replication 
studies from articles published in 2008.  The key finding was 
that significant results from cognitive psychology could be 
replicated successfully 50% of the attempts and significant 
results from social psychology could be replicated 25% of the 
time (OSC, 2015).

   Social psychologists have questioned these results. Their 
main argument is that the replication studies were poorly 
done.  “Nosek’s ballyhooed finding that most psychology 
experiments didn’t replicate did enormous damage to the 
reputation of the field, and that its leaders were themselves 
guilty of methodological problems” (Nisbett quoted in 
Bartlett, 2018).   

 Estimating mean power provides an empirical answer 
to the question whether replication failures are caused by 
problems with the original studies or the replication 
studies.  If the original studies achieved significance 
only by means of selection for significance or other 
questionable research practices, estimated mean power 
would be low. In contrast, if original studies had good power 
and replication failures are due to methodological problems 
of replication studies, estimated mean power would be high.

  We have applied z-curve to the original studies that 
were replicated in the Open Science project and found an 
estimate of 66% (Schimmack & Brunner, 2016).  This 
estimate is higher than the overall success rate of 37% for 
actual replication studies.  This suggests (but not 
conclusively) that problems with conducting exact 
replication studies contributed partially to the low 
success rate of 37%. At the same time, the estimate of 
66% is considerably lower than the success rate of 97% 
for the original studies. This discrepancy shows that 
success rates in journals are inflated by selection for 
significance (Sterling, 1959).  

   This example shows that estimates of mean power provide 
useful information for the interpretation of replication 
failures. Without this information, precious resources might 
be wasted on further replication studies that fail simply 
because the original results were selected for significance. 

Historic Trends in Power

   Our statistical approach of estimating mean power is also 
useful to examine changes in statistical power over time. So 
far, power analyses of psychology have relied on fixed 
values of effect sizes that were recommended by Cohen 
(1962, 1988).  However, actual effect sizes may change 
over time or from one field to another.  Z-curve makes it 
possible to examine what the actual power in a field of 
study is and whether this power has changed over time.  
Despite much talk about improvement in psychological 
science in response to the replication crisis, there is 
little evidence that the power of published studies has 
substantially increased (Schimmack, 2017).

Mean Power as a Quality Indicator

  One problem in psychological science is the use of 
quantitative indicators like number of publications or 
number of studies per article to evaluate productivity and 
quality of psychological scientists.  We believe that mean 
power is a more useful quantitative indicator.  A single 
study with good power provides more credible evidence 
and more sound theoretical foundations than three or 
more studies with low power that were selected from a 
larger population of studies with non-significant results 
(Schimmack, 2012). However, without quantitative in-
formation about power, it is unclear whether reported 
results are trustworthy or not.  Reporting the mean power 
of studies from a lab or a particular field of research can 
provide this information.  This information can be used 
by journalists or textbook writers to select articles that 
reported credible empirical evidence that is likely to 
replicate in future studies. 

P-Curve Estimates of Mean Power

Simonsohn et al. (2014) provided users with a free online
app to compute mean power.  However, they did not report 
the performance of their method in simulation studies and 
their method has not been peer-reviewed.  We evaluated their 
online method and found that the current online method, p-
curve4.06, overestimates mean power under conditions of 
heterogeneity (Schimmack & Brunner, 2017).  Moreover,  
even heterogeneity in sample sizes alone can produce 
biased estimates with p-curve4.06 (Brunner, 2018). We do 
agree, however, with Simonsohn et al. (2014) that p-curve2.0 
can be used for the estimation of mean effect sizes and that 
these estimates are relatively bias free even when there is 
heterogeneity in effect sizes.  Importantly, the estimates are 
for the population of studies after selection for significance, 
not for the population of effect sizes before selection for sig-

In which conditions?!?
Last section are most challenging

A bit strange sentence. You cannot increase k if a field has no more than k studies. Consider removing this sentence.

This is really ad hoc and untheoretical. I strongly recommend deleting this.

Use the 95% CI please. And please also include the ML CI.

No, a 95% CI is a 95% CI
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nificance. Failing to distinguish these two populations has 
produced a lot of confusion and unnecessary criticism 
of selection models in general (McShane, Böckenholt, 
& Hansen, 2016). While it is difficult to obtain 
accurate estimates of effect sizes or power before 
selection from data selected for significance, p-
curve2.0 provides reason-ably good estimates of 
effect sizes after selection for significance, which is 
the reason we built p-curve2.1 in the first 
place.  However, p-curve 2.1, and especially p-curve4.06, 
produce biased estimates of mean power even after 
selection for significance when  there is heterogeneity 
in effect sizes.  Therefore, we do not recommend 
using p-curve to estimate mean power after selection for 
significance.

P-uniform Estimation of Mean Power

Unlike p-curve, the authors of p-uniform limited 
their method to estimation of effect sizes and warn 
about the use of the method under conditions of 
heterogeneity in effect sizes. Nevertheless, we were 
surprised by the performance differences between 
pcurve2.1 and p-uniform because both methods are 
practically identical with the exception of the 
minimization function that finds the best 
approximation to a uniform distribution.  

 Recently, the developers of p-uniform changed 
the estimation method (vanAert, Wicherts, & vanAssen, 
2016). The new approach simply averages the 
rescaled p-values and finds the effect size that 
produces a mean p-value of 0.05. This method is 
called the Irvine-Hall method. We conducted new 
simulation studies with this method for the no 
correlation condition in Table 5 for 25%, 50%, and 
75% true power. in Table 5. We found that it 
performed much better (24%, 76%, 99%) than the old 
p-uniform method (85%, 91%, 97%), and slightly
better than p-curve2.1 (40%, 84%, 99%). 
However, the method still overestimates mean power 
for medium and high mean power. Therefore, we 
recommend the Irvine-Hall method for the estimation 
of mean effect sizes for a population of significant 
results, but not for the estimation of mean power.

Maximum Likelihood Model

Our ML model is similar to Hedges and Vevea's 
(1996) ML method that corrects for publication bias in 
effect size meta-analyses.  Although this model has 
been rarely used in actual applications, it received 
renewed attention during the current replication 
crisis (vanAert et al. 2016). McShane et al. argued 
that p-curve and p-uniform produced biased effect 

significant results.

Although this article is the formal introduction of 
z-curve, we have written about z-curve and applications of 
z-curve on social media since 2015 
(Schimmack, 2015).  Hence, criticism of our method 
has already been published in peer-reviewed journals 
before we were able to publish it. We would 
therefore like to address some of these criticisms 
and ask future critics to refer to this article as the 
authoritative seminal article about z-curve. DeBoeck 
and Jeon (2018) argue that attempts to estimate 
mean power (replicability) fail because population 
effect sizes are unknown. As we demonstrated 
here, z-curve does not require information about 
population effect sizes to provide accurate 
estimates of mean power because all of the 
relevant information is contained in the strength of 
evidence against the null-hypothesis. The only 
problem is that in small sets of studies, these 
estimates are not very precise,

size estimates, whereas  a heterogenous ML model produced 
accurate estimates. However, their focus was on 
estimating the average effect size before selection for 
significance.  This aim is different from our aim to estimate 
mean power after selection for significance. Moreover, in 
their simulation studies the ML model benefited from the 
fact that the model assumed a normal distribution of 
effect sizes and this was the distribution of effect sizes in 
the simulation study. In our simulation studies, the ML 
model also performed very well when the simulation 
data met model assumptions. However, estimates were 
biased when model assumptions differed from the effect 
size distribution in the data. 

  Hedges and Vevea (1996) also found that their ML 
model is sensitive to the actual distribution of 
population effect sizes, which is unknown. The main 
advantage of z-curve over ML models is that it does not 
make any distribution assumptions about the data.  
However, this advantage is limited to estimation of 
mean power.  Whether it is possible to develop finite 
mixture models without distribution assumptions 
for the estimation of the mean effect size after 
selection for significance remains to be examined.  

Future Directions

  One concern about z-curve was the sub-optimal performance 
when effect sizes were fixed.  One solution to this problem 
would be to develop a test of heterogeneity in effect sizes and 
to use p-uniform with the Irvine-Hall estimator or a better 
z-curve method for data with little heterogeneity.
Meanwhile, we recommend using multiple methods and
to interpret discrepancies between estimates in
light of our simulation results.

 Another issue is to examine performance of z-curve when 
researchers used questionable research practices (John, 
Loewenstein, & Prelec, 2012).  One questionable research 
practice is to include multiple dependent variables and to 
report only those that produced a significant result.  This 
practice would be no different from researchers running 
multiple exact replication studies with the same dependent 
variable and reporting only the studies that produced 
significant results for the selected DV.  The probability of this 
result to be selected is the true power of the study with the 
chosen DV and the probability of this finding to be replicated is 
also the true power of this study.  Power varies across DVs, 
but the power of the DVs that were discarded is irrelevant.  
Things become more complicated , however, if multiple DVs 
are selected or if only the strongest result is selected among 
several significant DVs.  Some questionable research practices 
may cause z-curve to underestimate mean power. For 
example, researchers who conduct studies with moderate 
power may deal with marginally significant results by 
removing a few outliers to get a just significant result.

try to generalize from samples to population 
parameters.  The e

the probability of obtaining a significant result increases 
when multiple dependent variables are used and only the DV 
with the strongest effect is reported.  In this case, our 

 Future Directions

At present, z-curve provides point estimates of mean power.  
This is not a problem when the number of studies is large (k > 
2000), but for small sets of studies sampling error is quite 
large and estimates may differ from the true parameter by 
more than 10 percentage points.  In the future, it would be 
useful to provide 

selection model overestimates the true power of this study 
because it assumes that a single attempt was made, just as we 
would overestimate the abilities of a sprinter, if the best time 
out of several attempts was used. Thus, z-curve estimates 
may be overly optimistic, if such questionable practices were 
used.  This would provide another explanation for the lower 
success rate of actual replication studies than z-curve 
predicted for the OSC project.  However, other questionable

some information about the amount of sampling error in z-
curve estimates (e.g., in the form of confidence inter-vals).

Another avenue for future research is to examine the 
performance of z-curve in simulations with questionable 
research practices (John, Loewenstein, & Prelec, 2012). Some 
questionable research practices are merely failures to report 
exactly how significant results were obtained.  For example,

too little messages:
- homogenous ES, all about equal performance (no big diff)
- heterogeneity, puniform and pcurve suck, z generally slightly better than ML when true ES not well approx by ML, otherwise ML slightly better; note, however, that makers of puniform and pcurve recommend NOT using the methods for these purposes (should be mentioned)
- cor(N,ES) and mixture stats do not matter (last you did not show, yet!)

I believe this is a fair conclusion, but...

When modelling power distributions with ML, I would use a distribution of ES that includes a pike at ES=0. So, you can also say in the discussion (further research) that this may be a viable option too. But your method will be easier/faster anyway, right? Could include that too.

As opposed to...

for estimating average power?
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This would create a pile of z-scores close to the 
critical value, leading z-curve to underestimate mean 
power. One solution to this problem is to change 
the selection criterion  from  the  critical  value  
(z  =  1.96)  to  a   higher value  (e.g.,  z  =  2.2  or   
2.4)   and   fit   z-curve  to this distribution. The 
means of the non-central distribution can then be 
used to compute mean power using the critical value 
so that mean power applies  to the full set of 
significant results.  A  comparison  of results with 
different selection  values  can  be  used  as  a sensitivity 
analysis. Ideally  these problems  will  be less 
prevalent in the future when fewer researchers use 
questionable research practices. 

   The choice of different selection criteria can also be 
used to deal with variation in significance thresholds. 
Although must studies use p < .05 (two-tailed) as a 
criterion, some studies use more stringent criteria, for 
example to correct for multiple comparisons.  
Including these results would lead to an overestimation 
of mean power, just like using p < .05 ,one-tailed as a 
criterion would lead to overestimation because  most 
studies used the more stringent two-tailed criterion to 
select for significance.  Another solution would be to 
exclude or run a separate analyses for sets of studies 
with different selection criteria.  However, in practices 
these results are currently so rare that they have no 
practical consequences for mean power estimates. 

Conclusion

Although this article is the seminal introduction of z-
curve, we have been writing about z-cuve and 
applications of z-curve since 2015 on social media. 
Thus, there have already been peer-reviewed criticism 
of our aims and methods before we were able to 
publish the method itself.  We would like to take this 
opportunity to correct some of these criticisms and to 
ask future critics to base their criticism on this article. 
    DeBoeck and Jeon (2018) claim that estimation 
methods for mean power are problematic because 
they "aim at rather precise replicability inferences 
based on other not always precise inferences, 
without knowing the true values of the effect size 
and whether the effect is fixed or varies" (p. 769).  
Contrary to this claim, our simulations show that z-
curve can provide precise estimates of replicability; that 
is, the success rate in a set of exact replication studies.  
To do so, only test statistics or exact p-values are 
needed. If this information or related statistical 
information (e.g. means, SDs, and N) are not provided,

an article does not contain quantitative information. 
Merely reporting p < .05 no longer meets current 
standards of reporting results in psychological 
science.  
   We hope that researchers will use z-curve to 
estimate mean power when they conduct meta-
analyses.  Hopefully, the reporting of mean power 
will help researchers to pay more attention to power 
when they plan future studies., and we might finally 
see an increase in statistical power, more than 50 
years after Cohen (1962) pointed out the importance 
of power for good psychological science. 
  More awareness of the actual power in 
psychological science could also be beneficial for 
grant applications to fund research projects properly 
and  to reduce the need for questionable research 
practices to boost power by inflating the risk of type-
I errors.  Thus, we hope that estimation of mean 
power serves the most important goal in science, 
namely to reduce errors. Conducting studies with 
adequate power reduces type-II errors (false 
negatives) and in the presence of selection bias it also 
reduces type-I errors.  The downside appears to be 
that fewer studies are being published, but 
underpowered studies selected for significance do 
not provide empirical evidence. Thus, even reducing 
the number of published studies is beneficial or 
to paraphrase Cohen (1990) said "Less is more, 
except for statistical power".
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Appendix

Proofs of the Theorems, with an example

This section of the appendix contains formal proofs of the
theorems given in the main body of the paper, together with
four additional theorems that clarify the effect of selection
for significance on the probability distribution of statistical
power. The principles are also illustrated with a numerical
example. Consider a population of F-tests with 3 and 26 de-
grees of freedom, and varying true power values. Variation
in power comes from variation in the non-centrality param-
eter, which is sampled from a chi-squared distribution with
degrees of freedom chosen so that population mean power is
very close to 0.80.

Denoting a randomly selected power value by G and the
non-centrality parameter by λ, population mean power is

E(G) =

∫ ∞

0
(1 − pf(c, ncp = λ)) dchisq(λ) dλ

To verify the numerical value of expected power for the ex-
ample,

> alpha = 0.05; criticalvalue = qf(1-alpha,3,26)
> fun = function(ncp,DF)
+ (1-pf(criticalvalue,df1=3,df2=26,ncp))*dchisq(ncp,DF)
> integrate(fun,0,Inf,DF=14.36826)
0.8000001 with absolute error < 5.9e-06

The strange fractional degrees of freedom were located using
the R function uniroot, minimizing the absolute difference
between the output of integrate and the value 0.8 numer-
ically over the degrees of freedom value. The minimum oc-
curred at 14.36826.

Theorem 1 states that Population mean true power equals
the overall probability of a significant result.

Proof. Suppose that the distribution of true power is dis-
crete. Again denoting a randomly chosen power value by G,
the probability of rejecting the null hypothesis is

Pr{T > c} =
∑

g

Pr{T > c|G = g}Pr{G = g}

=
∑

g

g Pr{G = g}

= E(G), (9)

which is population mean power. If the distribution of power
is continuous with probability density function fG (g), the cal-
culation is

Pr{T > c} =

∫ 1

0
Pr{T > c|G = g} fG (g) dg

=

∫ 1

0
g fG (g) dg

= E(G) �

Continuing with the numerical example, we first sample one
million non-centrality parameter values from the chi-squared
distribution that yields an expected power of 80%. These val-
ues are in the vector NCP. We then calculate the correspond-
ing power values, placing them in the vector Power. Next,
we generate one million random F statistics from non-central
F distributions, using the non-centrality parameter values in
NCP. In the R output below, observe that mean power is very
close to the proportion of F statistics exceeding the criti-
cal value. This illustrates Theorem 1 for the distribution of
power before selection. Needless to say, Theorem 1 applies
both before and after selection.

> popsize = 1000000; set.seed(9999)
> NCP = rchisq(popsize,df=14.36826)
> Power = 1 - pf(criticalvalue,df1=3,df2=26,NCP)
> mean(Power)
[1] 0.8002137
> Fstat = rf(popsize,df1=3,df2=26,NCP)
> sigF = subset(Fstat,Fstat>criticalvalue)
> length(sigF)/popsize # Proportion significant
[1] 0.800177

To show how Theorem 1 applies to the distribution of
power after selection, the sub-population of power values
corresponding to significant results are stored in SigPower.
The tests that were significant are repeated (with the same
non-centrality parameters), and the test statistics placed in
Fstat2. The proportion of test statistics in Fstat2 that
are significant is very close to the mean of SigPower. This
gives empirical support to the statement that population mean
power after selection for significance equals the probability
of obtaining a significant result again.

> SigPower = subset(Power,Fstat>criticalvalue)
> mean(SigPower) # Mean power after selection
[1] 0.8274357
> # Replicate the tests that were significant.
> sigNCP = subset(NCP,Fstat>criticalvalue)
> Fstat2 = rf(length(sigF),df1=3,df2=26,ncp=sigNCP)
> # Proportion of replications significant
> length(subset(Fstat2,Fstat2>criticalvalue)) /
+ length(sigF)
[1] 0.827172

Theorem 2 states that the effect of selection for signifi-
cance is to multiply the probability of each power value by
a quantity equal to the power value itself, divided by pop-
ulation mean power before selection. If the distribution of
power is continuous, this statement applies to the value of
the probability density function.

Proof. Suppose the distribution of power is discrete. Us-
ing Bayes’ Theorem,

Pr{G = g|T > c} =
Pr{T > c|G = g}Pr{G = g}

Pr{T > c}
=

g Pr{G = g}
E(G)

.

(10)
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If the distribution of power is continuous with density fG (g),

Pr{G ≤ g|T > c} =
Pr{G ≤ g,T > c}

Pr{T > c}

=

∫ g
0 Pr{T > c|G = x} fG (x) dx

E(G)

=

∫ g
0 x fG (x) dx

E(G)
.

By the Fundamental Theorem of Calculus, the conditional
density of power given significance is

d
dg

Pr{G ≤ g|T > c} =
g fG (g)
E(G)

. � (11)

For the numerical example we are pursuing by simulation,
the density function of power before selection is a technical
challenge and we will not attempt it. As a substitute, sup-
pose that power before selection follows a beta distribution,
a very flexible family on the interval from zero to one (John-
son, Kotz, & Balakrishnan, 1995). If power before selection
(denoted by G) has a beta distribution with parameters α and
β, Theorem 2 says that the density of power after selection (a
function of the power value g) is

f (g|T > c) =
Γ(α + β)
Γ(α)Γ(β)

gα−1(1 − g)β−1
(

g
E(G)

)
=

(
1

α/(α + β)

)
Γ(α + β)
Γ(α)Γ(β)

gα(1 − g)β−1

=
(α + β) Γ(α + β)
αΓ(α) Γ(β)

gα+1−1(1 − g)β−1

=
Γ(α + 1 + β)
Γ(α + 1) Γ(β)

gα+1−1(1 − g)β−1,

which is again a beta density, this time with parameters α+ 1
and β. M.A.L.M. van Assen has pointed out the similarity of
this result to conjugate prior-posterior updating in Bayesian
statistics. Figure 5 shows how a beta with α = 2 and β = 4 is
transformed into a beta with α = 3 and β = 4.

Theorem 3 states that Population mean power after selec-
tion for significance equals the population mean of squared
power before selection, divided by the population mean of
power before selection..

Proof. Suppose that the distribution of power is discrete.
Then using (10),

E(G|T > c) =
∑

g

g
g Pr{G = g}

E(G)
=

E(G2)
E(G)

. (12)

If the distribution of power is continuous, (11) is used to ob-
tain

E(G|T > c) =

∫ 1

0
g

g fG (g)
E(G)

dg =
E(G2)
E(G)

. � (13)

Figure 5. Beta density of power before and after selection
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In the example, SigPower contains the sub-population of
power values corresponding to significant results. Observe
the verification of Formula 13.

> # Repeating ...
> SigPower = subset(Power,Fstat>criticalvalue)
> mean(SigPower)
[1] 0.8274357
> mean(Power^2)/mean(Power)
[1] 0.8275373

Theorem 4 states that population mean power before se-
lection equals one divided by the population mean of the re-
ciprocal of power after selection..

Proof. Using Formula 10,

E
(

1
G

∣∣∣∣∣ T > c
)

=
∑

g

(
1
g

)
g Pr{G = g}

E(G)

=
1

E(G)

∑
g

Pr{G = g} =
1

E(G)
· 1

=
1

E(G)
,

so that

E(G) = 1
/
E

(
1
G

∣∣∣∣∣ T > c
)
.

A similar calculation applies in the continuous case. �

To illustrate Theorem 4, recall that the example was con-
structed so that mean power before selection was equal to
0.80.

> 1/mean(1/SigPower)
[1] 0.8000502
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In the example, population mean power is 0.80, while
population mean power given significance is roughly 0.83. It
is reasonable that selecting significant tests would also tend
to select higher power values on average, and in fact this in-
tuition is correct. Since

Var(G) = E(G2) − (E(G))2 ≥ 0, we have
E(G2) ≥ (E(G))2 , and hence
E(G2)
E(G)

≥ E(G).

Theorem 3 says E(G2)
E(G) = E(G|T > c), so that E(G|T > c) ≥

E(G). That is, population mean power given significance is
greater than the mean power of the entire population, except
in the homogeneous case where Var(G) = 0. The exact
amount of increase has a compact and somewhat surprising
form.

Theorem 5 states that the increase in population mean
power due to selection for significance equals the population
variance of power before selection divided by the population
mean of power before selection..

Proof.

E(G|T > c) − E(G) =
E(G2)
E(G)

− E(G)

=
E(G2)
E(G)

−
(E(G))2

E(G)

=
Var(G)
E(G)

. �

Illustrating Theorem 5 for the ongoing example,

> mean(SigPower) - mean(Power)
[1] 0.02722205
> var(Power)/mean(Power)
[1] 0.02732371

Theorem 6 says that the effect of selection for significance
is to multiply the joint distribution of sample size and effect
size by power for that sample size and effect size, divided by
population mean power before selection.

Proof. Note that power for a given sample size and ef-
fect size is P{T > c|X = es,N = n}. Suppose effect size is
discrete. Then P{X = es,N = n|T > c} is

P{X = es,N = n,T > c}
P{T > c}

=
P{T > c|X = es,N = n}P{X = es,N = n}

E(G)

=

(
P{T > c|X = es,N = n}

E(G)

)
P{X = es,N = n} ,

where E(G) is expected power before selection, equal to
P{T > c} by Theorem 1.

Suppose that effect size is continuous with density g(es).
The joint distribution of sample size and effect size before
selection is determined by P{N = n|X = es}g(es). The joint
distribution after selection is determined by
P{N = n|X = es,T > c} g(es|T > c)

=
P{T > c|X = es,N = n}P{N = n|X = es}g(es)

g(es|T > c)P{T > c}
g(es|T > c)

=

(
P{T > c|X = es,N = n}

E(G)

)
P{N = n|X = es}g(es) .

It is also possible to write the joint distribution of sample size
and effect size as the conditional density of effect size given
sample size, times the discrete probability of sample size.
That is, the joint distribution before selection is determined
by g(es|N = n)P{N = n}, and the joint distribution after se-
lection is determined by g(es|N = n,T > c)P{N = n|T > c}

=
d

des
P{X ≤ es|N = n,T > c}P{N = n|T > c}

=
d

des
P{X ≤ es,N = n,T > c}

P{N = n,T > c}
P{N = n,T > c}

P{T > c}

=
1

E(G)
d

des

∫ es

0
P{T > c|X = y,N = n}g(y|N = n)P{N = n} dy

=
P{T > c|X = es,N = n}g(es|N = n)P{N = n}

E(G)

=

(
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n} � (14)

Theorem 6 cannot be illustrated for the ongoing numer-
ical example, because the example employs a distribution
of the non-centrality parameter, rather than of sample size
and effect size jointly. As a substitute, consider that an ob-
served distribution of sample size after selection must imply
a distribution of sample size in the unpublished studies be-
fore selection. If that distribution is too outlandish (for ex-
ample, implying an enormous “file drawer" of pilot studies
with tiny sample sizes) we may be forced to another model
of the research and publication process. Theorem 6 allows
one to solve for P{N = n}, the unconditional probability dis-
tribution of sample size before selection, though an estimated
or hypothesized distribution of effect size given sample size
before selection is needed. When sample size and effect size
are deemed independent before selection, this is not a serious
obstacle.

Expression 14 says that g(es|N = n,T > c)P{N = n|T >
c} is equal to

(
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n},
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so that integrating both sides with respect to es,∫
g(es|N = n,T > c)P{N = n|T > c} des

= P{N = n|T > c}
∫

g(es|N = n,T > c) des

= P{N = n|T > c} · 1

=

∫ (
P{T > c|X = es,N = n}

E(G)

)
g(es|N = n)P{N = n} des

=

(
P{N = n}

E(G)

) ∫
P{T > c|X = es,N = n} g(es|N = n) des,

and we have

P{N = n} = E(G)

 P{N = n|T > c}∫
P{T > c|X = es,N = n} g(es|N = n) des


(15)

The numerator of the fraction is the probability of observ-
ing a sample size of n after selection for significance. The
denominator is expected power given that sample size, and
could be calculated with R’s integrate function. By The-
orem 1, the quantity E(G) is both population mean power
before selection and P{T > c}, the probability of randomly
choosing a significant result from the population of tests be-
fore selection. In Equation 15, though, it is just a proportion-
ality constant. In practice, one obtains P{N = n} by calculat-
ing the fraction in parentheses for each n, and then dividing
by the total to obtain numbers that add to one.

Maximum Likelihood

Even though sample size is a random variable, the quanti-
ties n1, . . . , nk are treated as fixed constants. This is similar to
the way that x values in normal regression and logistic regres-
sion are treated as fixed constants in the development of the
theory, even though clearly they are often random variables
in practice. Making the estimation conditional on the ob-
served values n1, . . . , nk allows it to be distribution free with
respect to sample size, just as regression and logistic regres-
sion are distribution free with respect to x. This is preferable
to adopting parametric assumptions about the joint distribu-
tion of sample size and effect size.

Suppose there is heterogeneity in both sample size and
effect size, and that effect size is continuous. The likelihood
function given significance is a product of conditional den-
sities evaluated at the observed values of the test statistics.
Each term is the conditional density of the test statistic given
both the sample size and the event that the test statistic ex-
ceeds its respective critical value.

The joint probability distribution of sample size and effect
size before selection is determined by the marginal distribu-
tion of sample size P{N = n} and the conditional density of
effect size given sample size gθ(es|n), where θ is a vector of
unknown parameters. Denoting the random effect size by X,

the conditional density of an observed test statistic T given
significance and a particular sample size n is

d
dt

P{T ≤ t|T > c,N = n}

=
d
dt

P{T ≤ t,T > c,N = n}
P{T > c,N = n}

=
d
dt

P{c < T ≤ t|N = n}P{N = n}
P{T > c|N = n}P{N = n}

=
d
dt

P{c < T ≤ t|N = n}
P{T > c|N = n}

=
d
dt

∫ ∞
0

P{c < T ≤ t|N = n, X = es}gθ(es|n) des∫ ∞
0

P{T > c|N = n, X = es}gθ(es|n) des

=
d
dt

∫ ∞
0

[
p(t, f1(n) f2(es)) − p(c, f1(n) f2(es))

]
gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

=

∫ ∞
0

d
dtp(t, f1(n) f2(es))gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

=

∫ ∞
0
d(t, f1(n) f2(es))gθ(es|n) des∫ ∞

0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

,

where moving the derivative through the integral sign is jus-
tified by dominated convergence. The likelihood function is
a product of k such terms. In the main paper, the simplifying
assumption that sample size and effect size are independent
before selection means that gθ(es|n) is replaced by gθ(es),
yielding Expression (3).

In the problem of estimating power under heterogeneity
in effect size, the unknown parameter is the vector θ in the
density of effect size. Let θ̂ denote the maximum likelihood
estimate of θ. This yields a maximum likelihood estimate
of the true power of each individual test in the sample, and
then the estimates are averaged to obtain an estimate of mean
power. We now give details.

Consider randomly sampling a single test from the pop-
ulation of tests that were significant the first time they were
carried out. Let T1 denote the value of the test statistic the
first time a hypothesis is tested, and let T2 denote the value
of the test statistic the second time that particular hypothesis
is tested, under exact repetition of the experiment. Condi-
tionally on fixed values of sample size n and effect size es,
T1 and T2 are independent. By Theorem 1, population mean
power after selection is

P{T2 > c|T1 > c} =
∑

n

P{T2 > c|T1 > c,N = n}P{N = n|T1 > c}

(16)
This is the expression we seek to estimate. Applying The-

orem 3 to the sub-population of tests based on a sample of
size n,
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P{T2 > c|T1 > c,N = n}

=
E(G2|N = n)
E(G|N = n)

=

∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]2 gθ(es|n) des∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

. (17)

Substituting (17) into (16) yields P{T2 > c|T1 > c} =

∑
n

∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]2 gθ(es|n) des∫ ∞
0

[
1 − p(c, f1(n) f2(es))

]
gθ(es|n) des

P{N = n|T1 > c} .

(18)
Expression 18 has two unknown quantities, the parameter
θ of the effect size distribution, and P{N = n|T1 > c}. For
the former quantity, we use the maximum likelihood esti-
mate, while the P{N = n|T1 > c} values are estimated by the
empirical relative frequencies of sample size, which is the
non-parametric maximum likelihood estimate. The result is
a maximum likelihood estimate of population power given
significance:

1
k

k∑
j=1

∫ ∞
0

[
1 − p(c j, f1(n j) f2(es))

]2
gθ̂(es|n j) des∫ ∞

0

[
1 − p(c j, f1(n j) f2(es))

]
gθ̂(es|n j) des

.

In the simulations, the density g of effect size is assumed
gamma, there is no dependence on n, and the parameter θ is
the pair (a, b) that parameterize the gamma distribution.

Simulation

Direct simulation from the distribution of the test statis-
tic given significance. All the simulated test statistics in
this paper were produced in the scenario of selection for sta-
tistical significance. The most natural way to do this is also
extremely wasteful. The natural approach is to simulate test
statistics from the distribution that applies before selection,
and then discard the ones that are not significant. But if one
can simulate from the joint distribution of sample size and
effect size after selection, the wasteful discarding of non-
significant test statstics can be avoided. The idea is to do
the simulation in two stages. First, simulate pairs from the
joint distribution of sample size and effect size after selec-
tion, and calculate a non-centrality parameter using Expres-
sion (1). Then using that ncp value, simulate from the dis-
tribution of the test statistic given significance. We will now
show how to do the second step.

It is well known that if F(t) is a cumulative distribution
function of a continuous random variable and U is uniformly
distributed on the interval from zero to one, then the random
variable T = F−1(U) has cumulative distribution function
F(t). In this case the cumulative distribution function from

which we wish to simulate is P{T ≤ t|T > c, X = es,N = n}

=
P{T ≤ t,T > c|X = es,N = n}

P{T > c|X = es,N = n}

=
P{c < T ≤ t|X = es,N = n}

P{T > c|X = es,N = n}

=
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)

for t > c, where as usual ncp = f1(n) f2(es). To obtain the
inverse, set u equal to the probability and solve for t, as fol-
lows. Denoting the power of the test by γ = 1 − p(c,ncp),

u =
p(t,ncp) − p(c,ncp)

1 − p(c,ncp)
⇔ u (1 − p(c,ncp)) = p(t,ncp) − p(c,ncp)

⇔ p(t,ncp) = u (1 − p(c,ncp)) + p(c,ncp)

⇔ p(t,ncp) = γu + 1 − γ
⇔ t = q(γu + 1 − γ,ncp).

Accordingly, let U be a Uniform (0,1) random variable. The
significant test statistic is

T = q(γU + 1 − γ,ncp)
= q(1 + γ(U − 1),ncp)
= q(1 − γ(1 − U),ncp) .

Since 1 − U also has a Uniform (0,1) distribution, one
may proceed as follows. For a given sample size and ef-
fect size, first calculate the non-centrality parameter ncp =

f1(n) f2(es), and use that to compute the power value γ =

1 − p(c,ncp). Then calculate the significant test statistic

T = q(1 − γU,ncp) , (19)

where U is a pseudo-random variate from a Uniform (0,1)
distribution. In R, the process can be applied to a vector of
ncp values and a vector of independent U values of the same
length.

Again, this is the second step. The first step is to simulate
a collection of ncp values using the desired joint distribution
of sample size and effect size after selection for significance.
Naturally, simulation is is easiest if sample size and effect
size come from well-known distributions with built-in ran-
dom number generation, and if sample size and effect size
are specified to be independent after selection. In one of our
simulations, sample size and effect size after selection were
correlated. The next section describes how this was done.

Correlated sample size and effect size. The following is
a description of how correlated sample sizes and effect sizes
were produced in the simulations described in “Violating the
assumptions of the ML Model." Let effect size X have den-
sity gθ(es), where θ represents a vector of parameters for
the distribution of effect size. Conditionally on X = es, let
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the distribution of sample size be Poisson distributed with
expected value exp(β0 + β1es). This is standard Poisson re-
gression. Simulation from the joint distribution is easy. One
simply simulates an effect size es according to the density
g, computes the Poisson parameter λ = exp(β0 + β1es), and
then samples a value n from a Poisson distribution with pa-
rameter λ. The challenge is to choose the parameters θ, β0
and β1 so that after selection, (a) the population mean power
has a desired value, and at the same time (b) the population
correlation between sample size and effect size has a desired
value. Population mean power is γ =∫ ∞

0

∑
n

[
1 − p(c, f1(n) f2(es))

]
P{N = n|X = es}gθ(es)des .

Given values of θ, β0 and β1, this expression can be calcu-
lated by numerical integration; recall that P{N = n|X = es}
is a Poisson probability.

The population correlation between sample size and effect
size is

ρ =
E(XN) − E(X)E(N)

SD(X) SD(N)
,

where SD(·) refers to the population standard deviation of
something. The quantities E(X) and SD(X) are direct func-
tions of θ. The standard deviation of sample size SD(N) =√

E(N2) − [E(N)]2, where

E(N) = E(E[N|X])

=

∫ ∞

0
E[N|X = es] gθ(es)des

=

∫ ∞

0
eβ0+β1esgθ(es)des

and

E(N2) = E(E[N2|X])
= E(Var(N) + E(N)2|X)

=

∫ ∞

0

(
eβ0+β1es + e2β0+2β1es

)
gθ(es)des .

Finally,

E(XN) =

∫ ∞

0

∑
n

es n P{N = n|X = es}gθ(es)des

=

∫ ∞

0
es E(N|X = es)gθ(es)des

=

∫ ∞

0
es eβ0+β1esgθ(es)des .

All these expected values can be calculated by numerical in-
tegration using R’s integrate function, so that the correla-
tion ρ can be evaluated for any set of θ, β0 and β1 values.

In our simulation of correlated sample size and effect
size, gθ(es) was a beta density, re-parameterized so that
θ = (µ, σ2) consisted of the mean µ and variance σ2. Con-
ditionally on effect size, sample size was Poisson distributed
with expected value exp(β0 + β1es). We set the variance of
effect size σ2 to a fixed value of 0.09, so that the standard
deviation of effect size after selection was 0.30, a high value.
Given any mean effect size µ and slope β1, the parameter
β0 (the intercept of the Poisson regression) was adjusted so
that expected sample size at the mean value was equal to 86:
β0 = ln(86) − β1µ.

With these constraints, the population mean power γ and
correlation ρ were a function of the two free parameters µ
and β1. Let γ0 be a desired value of mean power; for exam-
ple, γ0 = 0.5. Let ρ0 be a desired value of the correlation
between sample size and effect size; for example, ρ0 = −0.8.
Values of µ and β1 were locating by numerically minimizing
the function f (µ, β1) = |γ − γ0| + |ρ − ρ0|. We used R’s optim
function.
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